水中用多点線量測定器「十字型モニタ」に関する技術開発 DEVELOPMENT OF A WATERPROOF MULTI-DETECTOR DOSIMETRY SYSTEM FOR PARTICLE THERAPY

松下絵理^{A)},梅田忠和^{A)},門田亜希彦^{A)},木下 嘉久^{A)},中西正一^{A)},

本田泰三^{A)},西沢博志^{A)},林真照^{A)},金井達明^{B)},古藤映次^{C)}

Eri Matsushita ^{A)}, Tadakazu Umeda ^{A)}, Akihiko Kadota ^{A)}, Yoshihisa Kinoshita ^{A)}, Masakazu Nakanishi

Taizo Honda^{A)}, Hiroshi Nishizawa^{A)}, Masateru Hayashi^{A)}, Tatsuaki Kanai^{B),} Eiji Kotou^{C)}

^{A)} Mitsubishi Electric Corporation ^{B)} Gunma University Heavy Ion Medical Center ^{C)} Noric

Abstract

In order to check the dose distribution of a medical treatment simulation by particle radiotherapy, QA (Quality Assurance) measurement is carried out. In QA measurement, underwater OCR (Off Center Ratio: direction where a beam spreads), and dose distribution measurement of PDD (Percentage Depth Dose: direction of movement of a beam) are performed. Conventionally, by QA measurement, one finger head form ion chamber was made to scan, and it had measured one distribution of OCR and the direction of PDD at a time. The multi-channel type QA equipment "a cross type monitor" whose measurement of the direction of OCR is enabled at once was developed for measurement-efficiency-izing. A beam examination is carried out in the Gunma University Heavy Ion Medical Center, and since the cross type monitor's validity was checked, it reports.

1. はじめに

粒子線治療では、治療計画装置を使用して治療シ ミュレーションを行う。治療シミュレーションの線 量分布を確認するため、QA(Quality Assurance)測定 を実施する。QA 測定では、人体を模擬した水ファ ントム中に線量測定用検出器を設置し、水中での OCR(Off Center Ratio: ビームに垂直方向)、 PDD(Percentage Depth Dose:ビームの進行方向)の線 量分布測定を行う。

従来、QA 測定では 1 つの指頭型電離箱を走査させ、OCR と PDD 方向の分布を 1 点ずつ測定していた。測定効率化を図り、一度に OCR 方向を測定可能とする水中用多点線量測定器「十字型モニタ」を開発した(Figure 1.1)。

ビーム照射方法には、ビームを広げて患部に一様 に照射する通常照射法と、患部形状に合わせて、深 さごとに照射条件を最適化する積層原体照射法があ る(Figure 1.2)。通常照射法は、照射前に機器を設定 し、静的な状態で標的(がん病巣)に一定量のビーム を照射する。一方で、積層原体照射法では、標的の 形状に合わせて、照射中にいくつかの機器を動的に 制御し、ビーム深さごとに照射する事で治療体積と 標的の一致度を向上させる。積層原体照射法では、 機器の制御を行うため、通常照射法に比べて測定時 間を要する。従って積層原体照射法での十字型モニ タ運用により、測定時間を大幅に短縮する事が期待 される。

十字型モニタは、水中線量分布が測定可能である ため、絶対線量計として使用できる点が特徴となる。

Figure 1.1 QA measurement method

Figure 1.2 irradiation method

2. 十字型モニタ仕様

2.1 全体構成

システム構成を Figure 2.1 に示す。十字型モニタ の各電極で取得した測定値(電流値)は信号処理回路 にて I/V変換 $\rightarrow A/D$ 変換された後、計算機に送信さ れる。

+字型モニタに電圧を印加するため、信号処理回 路内部には高圧電源を備える。また、専用の駆動装 置、ドライバ、シーケンサを使用して、水ファント ム中でビーム深さ方向に駆動させた測定を可能とす る。測定位置を設定し、設定が完了した時点でビー ムを照射し、線量測定を行う。

Figure 2.1 system configuration figure

2.2 十字型モニタセンサ部

Table 2.2 に仕様を記載する。

+字型モニタセンサ部は、平行平板型電離箱を+ 字型に配列させた放射線検出器である。陰極はアレ イ状の分割電極(測定電極)、陽極は共通電極(高圧電 極)で構成される(Figure 2.2.1)。電極間にビームが入 射すると、電離作用により正/負イオンが発生する。 発生した正イオンを測定電極で収集し、粒子線の線 量分布を測定する。水中での線量測定を行うため、 センサ部は防水構造となる。

Table 2.2	specification	of multi	electrode
-----------	---------------	----------	-----------

サイズ	316mm×366.5mm×40mm
重量	2.8kg
測定範囲	X 方向 220mm, Y 方向 220mm
電極サイズ	3mm×3mm
電極数	X 方向 57ch, Y 方向 57ch
	計 113ch
電極セル間距離	4mm
電極間ギャップ	3mm

(1) PHITS による物理シミュレーション

+字型モニタ内の粒子挙動(主に散乱の影響)を確認するため、粒子・重イオン汎用モンテカルロコードである PHITS(Particle and Heavy Ion Transport code System)を用いて、シミュレーションを実施した。

指頭型電離箱の場合、体内に近い状況を模擬する ため、電極周辺の構造物を最小限にした上で、周囲 を水で囲んでいる。これに対して、十字型モニタは 測定電極数が増えるため、指頭型電離箱に比べて周 辺の構造物が増える。PHITS の環境で十字型モニタ (Figure 2.2.2)及びビーム輸送系のジオメトリを構築 し、実際の照射条件に近い形で影響を評価した。

陽子線、炭素線それぞれでシミュレーションを実施し、十字型モニタ構造において、散乱の影響が無い事を確認した。

(2) POISSON による静電場シミュレーション

+字型モニタ電極間(測定電極-高圧電極間)の電 場一様性を確認するため、2次元静電場(静磁場)解 析コード POISSON を用いて、電場解析を行った。 シミュレーション結果より、一様電場となる測定電 極サイズ、高圧電極サイズを確認した。

Z 軸: ビーム進行方

Figure 2.2.1 multi electrode structure

Figure 2.2.2 multi electrode structure sectional view

2.3 十字型モニタ信号処理回路

+字型モニタセンサ部から出力される電気信号 (電流値)は微小電流であるため、信号処理回路のア ンプ回路にて信号を増幅する。レンジは2種類切替 え可能とする。アンプ回路で増幅した信号は、I/V 変換後、AD コンバータにて A/D 変換され、計算機 へと送信される。

測定データとしては、ビーム照射中に取得する計 測データ(電流値)及び計測時間の他に、ビームを照 射していない間の暗電流値及び暗電流測定時間を取 得する。計測データから暗電流を差し引いた演算後 のデータを保存する。

Table 2.3 specification of signal processing circuit

サイズ	500mm×300mm×340mm
重量	3kg
レンジ	300pA,1600pA の 2 レンジ
最小分解能	0.15pA
サンプリング周期	24kpps
入力チャネル数	128ch

3. ビーム検証結果

十字型モニタの性能を評価するため、群馬大学 重粒子線医療センターにてビーム検証試験を実施 した。

Table 3.1 の条件で測定した指頭型電離箱と十字型モニタの結果を Figure 3.1 に示す。加速器から出射したビームは散乱体によりビーム径を拡大する。偏向電磁石(ワブラー電磁石)で円を描き、リッジフィルタを使用して、SOBP(Spread out Bragg peak)を形成して、標的(本測定では、十字型モニタ及び指頭型電離箱)に照射する。

指頭型電離箱と十字型モニタの出力値差異は約 ±1%であり、線量分布を評価する上で十分な結 果が得られた。治療で使用するビーム平坦度は± 3%であるため、出力値の一致度が±0.5%以内と なる事を目標とした。検証1では約78%(測定全 81 点中68 点)、検証2では約56%(測定全 81 点 中56 点)で目標値を達成した。

Table3.1	measurement	conditions
----------	-------------	------------

	検証1	検証2
核種	Carbon	Carbon
エネルギー	400MeV/u	290MeV/u
SOBP	60mm	60mm
SOBP 照射野(mm)	60mm φ 160mm	60mm φ 160mm

4. 考察・今後の課題

4.1 通常照射法での検証

通常照射法において、十字型モニタの動作確認を 行い、ビームプロファイルを確認した。指頭型電離 箱と出力値比較を行い、同程度の性能が得られた。

指頭型電離箱と十字型モニタ出力値差異が、目標 値(±0.5%)を達成しない特異点については、十字型 モニタセンサ部及び信号処理回路素子の特性を確認 するとともに、校正方法を見直す。

現状は、任意条件での十字型モニタ及び指頭型電 離箱出力値から校正定数を算出している。十字型モ ニタで取得した出力値は、校正定数を使用して指頭 型電離型出力値の単位に変換する。このため、評価 する十字型モニタデータ(校正後)には、自身の誤差 に加えて、指頭型電離箱の誤差が含まれる。

現状考えられる誤差の1つに、位置精度がある。 十字型モニタでは、OCR 分布を1度に測定するの に対して、指頭型電離箱では OCR 分布各1点ずつ、 位置をずらして測定する。指頭型電離箱で測定位置 のずれが生じると、誤差となる。

全体の誤差が最小となる最適な校正方法について、 検討する必要がある。

4.2 積層原体照射法での検証

積層原体照射について、ビーム検証試験を実施し、 出力プロファイルを評価する必要がある。信号処理 回路の長期安定性(回路ドリフト)を確認し、通常照 射法での校正方法が積層原体照射法でも使用できる か確認する必要がある。