PASJ2014-FSP022

# 東北大学電子光理学研究センターの加速器の現状

## PRESENT STATUS OF ACCELERATORS IN ELECTRON LIGHT SCIENCE CENTRE, TOHOKU UNIVERSITY

高橋 健, 柏木 茂, 日出 富士雄, 武藤 俊哉, 柴崎 義信, 南部 健一, 長澤 育郎, 東谷 千比呂, 濱 広幸 Ken Takahashi, Shigeru Kashiwagi, Fujio Hinode, Toshiya Muto, Yoshinobu Shibasaki, Kenichi Nanbu, Ikuro Nagasawa, Chihiro Tokoku, and Hiroyuki Hama Electron Light Science Centre, Tohoku University

#### Abstract

The Great East Japan Earthquake caused serious damage on the accelerator facility in Electron Light Science Centre, Tohoku University, and an old 300MeV electron linac was hardly recovered its performance for injecting electron beam to a 1.2GeV booster synchrotron. The decision had been made that the accelerating components of only the low energy part would be recovered for RI production. Upgrading the high voltage unit for electron Gun and magnets in a dispersion section, the linac was recovered with the energy of 70MeV. Meanwhile it was also necessary to build a new injector for the synchrotron separated from the old 300MeV linac and to upgrade itself to be able to boost the beam from lower energy. With careful design of new combined magnet and its power train, the 1.3GeV synchrotron (BST-ring) was recovered with new 90MeV injector linac. In the meantime, building of a test accelerator from 2005 for generating intense THz light had finished. All four accelerators in Electron Light Science Centre were approved for the regulation of radiation safety at Dec 19<sup>th</sup> 2013, and started its operation for the scientific research work from Dec 20<sup>th</sup> 2013. Operation time exceeded 500 hours within the three months, and it is comparable to the one before the Great East Japan Earthquake. The current status of each accelerator and the some of the update of the utility will be reported.

### 1. はじめに

平成 23 年電子光理学研究センターの電子加速器 は東日本大震災により甚大な被害を受け、300MeV 電子ライナックの完全な復旧を断念せざるを得な かった。被害があったものの復旧が見込めた 1.2GeV 電子シンクロトロンと部分的な利用が可能 であった 300MeV 電子ライナックの低エネルギー加 速部を、前者は主として原子核やテストビーム実験、 後者は RI 生成を目的とした 2 つの別の加速器とし て復旧させる決断をした。ストレッチャーモードで の運転を廃止し、ブースターモードでのみの運転と した電子シンクロトロンには、その入射器として新 規に 90MeV の電子ライナックを建設した。リング はより低いエネルギーからの加速に対応するため、 入射用パルス電磁石電源をより精密なトラッキング が可能な電源に更新するとともに、複合機能型四極 電磁石を導入して、最大加速エネルギーを 1.3GeV に引き上げた。また、以前と同スペックでの運転が 不可能のとなった 300MeV 電子ライナックは、電子 銃高圧部と実験室へのビームラインを低エネルギー での利用に最適化する更新を行い、その最大エネル ギーを 70MeV とした。



Figure 1: Approved accelerators in Electron Light Science Centre, Tohoku University.

<sup>#</sup> ken\_takahashi@lns.tohoku.ac.jp

平成 25 年 11 月 8 日に 70MeV 低エネルギーライ ナック、90MeV シンクロトロン入射器、1.3GeV 電 子シンクロトロン、50MeV 光源加速器を電子光理学 研究センターの加速器として申請し、同年 12 月 12 日 13 日に放射線施設検査が実施された。19 日に検 査合格が通知され、翌日 20 日に震災後初めて共同 利用実験を再開した。

#### 2. 共同利用運転時間

平成 25 年度は、三ヶ月で共同利用実験時間が 500 時間を上回り(Figure 2)、復旧以前と同等か、それを 上回る月毎利用時間となった。加速器の運転時間は 1.3GeV シンクロトロン、90MeV 入射ライナック、 70MeV 低エネルギーライナック、50MeV 光源加速 器でそれぞれ、1195 時間、1300 時間、50 時間、88 時間となった。平成 26 年度は 7 月末までの集計で 運転時間は 395 時間、419 時間、61 時間、21 時間で ある。



Figure 2: Comparison of monthly operation time before and after the Great East Japan Earthquake.

### 3. 低エネルギーライナック(70MeV)

震災により 300MeV ライナックの高エネルギー加 速部を廃し(Figure 3)、低エネルギーのビームを実験 室へ輸送するのに適切な電磁石で分散部を更新した。 実験室側では偏向電磁石で3つのビームラインへ振 り分ける構成だったが偏向電磁石を撤去し、スト



Figure 3: Replaced dispersion section omitting straight beam line to a synchrotron.

レートコースのみに変更した(Figure 4)。試料照射室 は試料をビームラインに送る照射台を整備し、ター ゲットホルダーとビームダンプはそれぞれ熱交換器 での冷却を行うシステムとした。スペックは 50MeV、 300pps、120 µ A となっている。上位計算機で一括制 御するためソフトウェアを整備し、復旧以前と比べ て立ち上げ時間を大幅に削減し、且つ以前の入射と 照射の切り替えがあるシステムでは難しかったビー ムの再現性・安定性を確保することができた。今後 の課題として、真空排気系の経年によるパフォーマ ンスの低下で、運転中の真空度低下・インターロッ クでの運転中断が少なからずあることから、長期メ ンテナンス時にイオンポンプセル交換を検討してい る。また、機器に運転起因の放射線ダメージが少な からずあることから、ローカル遮蔽体の設置を現在 検討している。



Figure 4: Inventor model of the irradiation room for RI production.

# 4. シンクロトロン入射器(90MeV)

平成 26 年度に入って熱陰極RF電子銃のカソー ド交換を三度行った(Figure 5)。理由として経年と思 われるエミッション低下と、カソードとフィードス ルー間の銅板が温度変化で地絡することによる出力 不安定である。また、独立2空洞型RF電子銃の第 一空洞側で入力高周波の波形の乱れがあったが、導 波管長を伸ばすことで運転パラメータ付近での波形 の不安定さを解消した。リング入射点までの輸送経 路のビームプロファイル観測用カメラを更新し、モ ニタ系の強化を行った。リング入射の分散部でエネ ルギー選択のスリット挿入による放射線の影響でマ グネスケールが故障することから、タンタルの遮蔽 板を設置し対処した。



Figure 5: Replacing a cathode of injector linac.

#### PASJ2014-FSP022

# 5. シンクロトロン(1.3GeV)

現在、電磁石電源のパターン運転を制御するソフ トウェアとユーザーがビームを維持する際に利用す る専用のソフトウェアの整備を行っていて、EPICS CA で言語を縛らずに開発している。トレンドログ やイベントログを取るシステムを整備したことで、 以前は難しかった入射器とリングのシームレスな制 御と再現性の向上を目指している。また、ダイナ ミックアパーチャ改善のため電磁石の再アライメン トを行っている。今年度にかけて低真空排気系の更 新やリング各所への真空ゲージ導入などの真空モニ タ系の強化を行った。今後の課題として、ビーム電 流の増強とビームの安定化、真空の改善などに取り 組む予定である。



Figure 5: 1.3GeV Electron Synchrotron.

### 6. 光源加速器(50MeV)

平成 25 年度 12 月の施設検査に高輝度光源開発用 試験加速器を申請し、当センターの4番目の加速器 となった。事業所境界が近いことなど放射線防護に 十分かつ実験スペースを損なわない遮蔽体の配置が 要求され、特殊な形状で組み合わせ方に自由度の高 いシールドブロックを制作し、実験スペースの確保 と遮蔽を両立した。ビームダンプは損失点から放射 線が漏れにくい構造として、天井に積み上げるシー ルドブロックを少なくし、遮蔽の規模が過剰になら ないよう工夫した。熱陰極の独立2空洞型 RF 電子 銃を用いて、50MeV、10pC のビームを 1pps で生成 している。加速管中の速度圧縮方による極短バンチ 生成を行い、アンジュレータでのコヒーレント放射 光の生成を当面の目標としている。現在ビームスタ



Figure 6: All accelerators components viewed from RF-Gun.



Figure 7: Layout of a test accelerator for generating intense THz Light.

ディとして OTR を観測する電子ビームバンチ長測 定とバンチ圧縮の測定を行っている。今後、チェレ ンコフ光の放射角度の速度依存性を利用した、シン グルショットバンチ長モニタの開発も進めていく予 定である。

# 7. 施設ユーティリティ

電気室の受電設備・変圧器・低圧分電盤など建設 当初から運用していたものを現在の安全基準を満た す仕様へと更新が行われた。クライストロンと冷却 系の変圧器を更新するにあたって、設置場所をこれ までの管理区域から電気室へと移設し、入射器と低 エネルギーライナックで電源回路を分けたことで、 メンテナンス性を向上させた。また従来手動で行っ ていた力率改善用進相コンデンサの切り替えを、自



Figure 8: Renewed relays and circuit breakers.



Figure 9: Relocated transformers for klystron modulators and cooling systems from the radiation controlled area.

### PASJ2014-FSP022



Figure 10: Newly built automatic power factor regulator. 動力率調整装置を導入し自動化した。

# 謝辞

多くの企業や研究者の方々からの多大なる励まし に支えられて、東北大学電子光理学研究センタース タッフー同は復旧復興に全力で取り組むことができ、 今日共同利用の運転を再開するまでに至りました。 皆様のご厚誼に感謝いたします。