PASJ2016 FSP019

先端加速器施設(ATF)の現状

STATUS REPORT OF THE ACCELERATOR TEST FACILITY

照沼信浩^{#, A)}, 久保浄^{A)}, 黒田茂^{A)}, 奥木敏行^{A)}, 内藤孝^{A)}, 荒木栄^{A)}, 福田将史^{A)}, 森川祐^{A)}, 田内利明^{A)} ATF 国際コラボレーション^{B)}

Nobuhiro Terunuma ^{#, A)}, Kiyoshi Kubo ^{A)}, Shigeru Kuroda ^{A)}, Toshiyuki Okugi ^{A)}, Takashi Naito ^{A)}, Sakae Araki ^{A)},

Masafumi Fukuda^{A)}, Yu Morikawa^{A)}, Toshiaki Tauchi^{A)} and the ATF International Collaboration^{B)}

^{A)} KEK, High Energy Accelerator Research Organization

B) http://atf.kek.jp

Abstract

Accelerator Test Facility (ATF) at KEK is a research center for studies on issues concerning the injector, damping ring, and beam final-focus system for the ILC. ATF2 is a final-focus test beam line that aims to focus the low emittance beam from the ATF damping ring to a vertical size of 37 nm and to demonstrate the nanometer level beam stability, using numerous advanced beam diagnostics and feedback system. A beam size around 44 nm at the ATF2 focal point is routinely obtained. A position stabilization of the second bunch which is extracted as a multi-bunch beam in a pulse from the damping ring, has been studied by the intra-train fast position feedback. A smaller beam size of the second bunch was obtained by applying this feedback. Recent progresses conducted by the ATF international collaboration are reported.

1. はじめに

KEK の先端加速器試験施設(Accelerator Test Facility, ATF)では、国際リニアコライダー(ILC)^[1]で必要とされる ナノメートル極小ビームの技術開発をはじめ、各種の先 端的ビーム診断装置やビーム制御装置など、多くの加 速器でも展開が期待される技術開発を進めている。

ATF は電子加速器システムであり、Cs₂Te 光陰極型高 周波電子銃、1.3GeV S バンド線型電子加速器、1.3GeV ダンピングリング、ビーム取り出しラインおよび最終収束 試験ビームラインで構成されている(Figure 1)。電子銃で は、2x10¹⁰ electrons/bunch を 2.8 nsec 間隔で 20 バンチ 生成することが可能であるが、最近ではナノメートル極小 ビームの技術開発に特化しており、1x10¹⁰ electrons/bunchのシングルバンチを 3.1 Hz で生成してい る。ダンピングリングは、線型加速器からのビームを3トレ インまで蓄積できる。リングからビームを取り出すキッカー 電磁石の flattop は約300 nsec であり、この間に3バンチ を蓄積すれば、その時間構造に応じたバンチ列を一度 に取り出すことができる。これにより、150 nsec 間隔の3バ ンチや300 nsec 間隔の2バンチなど、ILC を模した間隔 でのマルチバンチを利用している。

2. ATF 国際コラボレーション

ILC をターゲットにしたナノメートル極小ビームの技術 開発は、ATF ダンピングリングで生成される 10 pm の低 エミッタンスビームとビーム最終収束システムの組み合わ せで可能となる^[2]。

Figure 1: Layout of the ATF. 100m x 50m.

[#] nobuhiro.terunuma@kek.jp

Proceedings of the 13th Annual Meeting of Particle Accelerator Society of Japan August 8-10, 2016, Chiba, Japan

PASJ2016 FSP019

この提案に基づき、2005 年に国内外の研究機関の長が署名した協定書が取り交わされ、ATF 国際コラボレーションが発足した^[3]。ATF の最終収束試験ビームラインは、設計から建設にわたり国際的な分担で進められ、2010 年から運用が開始された^[4]。現在の開発研究も国際的に協力して進められている。

最終収束試験ビームラインでの研究開発については、 国際的な背景に基づくこと、ダンピングリングでの低エ ミッタンスビーム技術開発が中心であった時期からの更 なる展開であること明確にするため、従来のものと区別し て ATF2 と呼ばれている。

ATF で行われている研究開発は多岐にわたり、国内 外の大学および研究機関から非常に多くの研究者が参 加している(Figure 2)。特に ATF2 ビームラインの建設お よび commissioning 期(2006~10)では、担当するビーム 診断・制御機器の立ち上げに海外から多くの研究者が 訪れていた。2011 年以降は機器の運用が軌道に乗り、 ビーム光学技術開発に重心が移ったが、それでも年 3000 人日程度の状態が維持されている

ATFのビーム運転は年間20週程度であったが、最近 は電気代高騰などの影響で14週程度にせざるを得ない 状況である。しかし、海外参加者の関心は高く、海外からの訪問者数に大きな変化は無い。ATFでの研究開発 では、新たな装置導入やその改善を行う時間が必要で あり、通常2週間を単位としてビーム運転を繰り返すが、 週末と2週間に続く1週間を保守・改善の期間として確 保し、ビーム試験と装置開発が効率よく進められるように している。

Figure 2: Number of visited researchers.

3. ナノメートルビーム技術開発

ILCでは想定するルミノシティーを得るために、垂直方 向 6 nm (rms)まで絞られた 2600 バンチの電子ビームを 同様な陽電子ビームと衝突させる。この 2600 バンチの ビーム加速は超伝導 RF システムで行われるが、KEK の STF を始め世界的に開発が進められている。一方、ナノ メートル極小ビームの技術開発では、1990 年代に SLAC で Global Chromaticity Correction という収差補正方法に よる最終収束システムの試験(Final Focus Test Beam, FFTB)が行われ、垂直方向 70 nm のビームが確認されて いた^[5]。現在の ILC 設計では当時とは異なる Local Chromaticity Correction 方式が採用されている^[6]。この 方式では Global 方式と比べてビームラインが約 1/3 の 700 m 程度に短くできるなど幾つかの利点がある。その 反面、ビーム調整が複雑であり、何よりも原理実証が必 要であった。このため、前節で述べたように、ATF ダンピ ングリングで得られる低エミッタンスビームを利用した Local Chromaticity Correction 方式の最終収束システム 試験計画 (ATF2 計画)が立ち上がったのである。

Figure 3: ATF2, final focus test beamline.

ATF2 計画における目標は大きく分けて二つある。第 一の目標は ILC 衝突点に相当する場所での垂直方向 37 nm の極小ビームの安定した実現である。第二の目標 は、この極小ビームの衝突点での位置を、ナノメートルレ ベルで維持安定化することである。これらは ILC の設計 ルミノシティー達成上、必須の技術である。

3.1 第一の目標: 垂直 37 nm の極小ビーム開発

ATF2 ビームライン(Figure 3)は ILC 最終収束ビームライ ンと同じ光学設計に基づいている。Energy spread は 0.1%、natural vertical chromaticity はおよそ 10000 とされ、 さらに電磁石の field error に対する許容度は ILC のもの と同等である。最終四極電磁石から衝突点までの距離 L*やビームエネルギーを考慮すると、ILC 設計値の垂直 方向ビームサイズ 6 nm は、ATF2 において 37 nm に相 当する。これを ATF2 において実現することで、ILC 最終 収束技術を実証し、更なる高度化への知見を得ることを 狙っている。

ILC では電子および陽電子ビームの衝突散乱をモニ ターすることで、ナノメートルへのビームサイズ調整(ルミ ノシティー最適化)を行う事になる。しかしながら ATF は 電子ビームのみの加速器でありこの方法は使えない。そ のため、直接電子ビームの大きさを測ることになる。しか しながら、通常のビームサイズモニター、例えば金属や カーボンによる Wire Monitor、Optical Transition Radiation(OTR)や Optical Difraction Radiation (ODR)を 利用する放射モニター、さらには ATF で英国 JAI と共同 で開発した Laser Wire Scanner^[7]であっても分解能は 1 μ m 程度であり、37 nm の測定には遠く及ばない。そのた め ATF2 における極小ビームサイズの調整は、レーザー 干渉縞と電子ビームとの逆コンプトン散乱を利用した測 定を通して行われる^[8] (IPBSM, Figure 4)。

IPBSM は ATF2 ビームラインの focus point (ILC にお ける衝突点 IP) に設置されている。レーザーの交差角で **PASJ2016 FSP019**

Figure 4: Schematic configulation of the nanometer beam size monitor.

干渉縞のピッチが決まり、それに応じてビームサイズの 測定範囲が決まる。ATF2 の IPBSM では 3 種類の交差 角モードが用意されており、設計上は 20 nm 程度までの 測定範囲をカバーしている^[9]。ビームライン立ち上げの 状態からは、5 µm のカーボンワイヤモニターでビームサ イズ測定を行いながら 2 µm 程度までビームを絞り込む。 続いて、IPBSM での最初の交差角モードを用いて 300 nm 程度以下まで追い込む。ここで第二の交差角モード に移り、さらに 100 nm 程度以下までビーム調整を進める。 そして最終の交差角モードに切り替えて数 10 nm 台の ビームサイズ調整を行う。ビームサイズが小さくなればな るほど、安定な測定が求められることとなり、モニター自 身の高度化を進めていく必要がある。

極小ビームの調整では chromatic aberration の補正が 重要であり、6極電磁石およびスキュー6極電磁石を使っ て技術開発が進められてきた^[10,11]。2012 年に初めて 100 nm の壁を越え、2014 年には FFTB 実験の 70 nm を さらに下回る世界最小ビームサイズ 44 nm^[12,13]までビー ムを絞ることに成功した (Figure 5)。ここで、このビームサ イズは当初想定していたビーム強度の~1/10 に相当する 1x10⁹ electrons/bunch で得られたものであることに注意し たい。光学設計の観点から、目標に近い値での極小 ビーム達成により Local Chromaticity Correction 方式の 技術検証は満足のいくレベルにあると判断できる。一方 で、高いビーム電流ではビームサイズが増大しており、

Figure 5: History of measured minimum beam size.

Wakefield に起因すると見られる大きなビーム電流依存 性があり、その評価・検証が求められている。

このビーム電流依存性を低減するため、β値が大きく Wakefield の影響が大きいと推測される場所でのベロー ズや排気ポートのシールド強化、ビームダクト内面の段 差軽減などを進めると共に、積極的に Wakefield の影響 を打ち消す(低減する)ことを狙って、空洞型 BPM など 大きな内部構造をもつ機器を載せたステージを導入し、 遠隔操作でビームに近づけたり遠ざけたりして影響を評 価している。

エネルギーの違いなどから wakefield の影響を評価す ると、ATF2 での 1x10⁹ electrons/bunch の状態は、ILC で の設計ビーム強度 2x10¹⁰ 程度に相当すると見積もられ ている。つまり ATF2 で 44 nm を達成したことは、ILC で の 7 nm とほぼ目標に近く、大きな問題とはならないと推 測される。しかしながら、その妥当性を高めるためにも、 状況を変えた実験からも評価することが望ましく、そのた めに、ATF2 ビームラインから全体の 1/3 にも及ぶ空洞型 BPM などを取り外し、wakefield の影響を計算上半分に して、ビーム評価試験を行うことを計画している。幾つか の R&D は実施できなくなるなど影響は大きいが、本年 度 11 月に行うことが ATF 国際コラボレーションとして合 意されている。

3.2 第二の目標:ナノメートルでのビーム位置制御

ILC の電子ビームと陽電子ビームは、それぞれ約 10 km に及ぶ加速器ビームラインを通ってくる。それらは地 盤振動や加速器機器の変動を受ける。衝突点での電 子・陽電子ビームの衝突を維持するためには、これら極 小ビームの衝突点での位置を数 nm レベルで安定化さ せることが重要である。ILC のビームは 1 ms の時間幅で の多バンチであり、最もバンチ数が多いオプションでは 2600 個のバンチが 366 ns 間隔で衝突点に送られてくる。 地盤振動などビーム位置を乱す要因となる周期はこれに 比べて遅く、結果として 1 ms のバンチ列はコヒーレントに 振動の影響を受けると見なせる。そこで先頭のバンチか ら位置のズレ情報を引き出し、後続のバンチ群の位置ズ レを補正する Intra-train feedback^[14]技術(FONT)が提案 され、Oxford 大学を中心に開発が進められてきた。

ATF の取り出しビームラインに 2 台の stripline kicker と3 台の stripline BPM が設置され、高速 digital feedback system に接続されている。ここでダンピングリングから取 り出される 150 ns 間隔の 3 バンチ beam を使い、FONT システムの開発を進めている。今までに応答速度 133 ns、 ビーム位置ジッターを 1/3 の 0.8 um まで低減させること に成功している。低減率は Stripline BPM の分解能に依 存している。現在の安定化技術開発では、このシステム を ATF2 の仮想衝突点に、ナノメートル分解能の空洞型 BPM を用いて構築して試験を進めている。

ILC では、ビームがナノメートルレベルになる衝突点 近傍は Vertex 検出器などで占有されており、直近の BPM は 2m ほど離れて設置される。そこではミクロンレベ ルのビームであり、想定する位置分解能も同程度で良く、 Stripline 型 BPM が想定されている。つまり、ILC 衝突点 ではナノメートルレベルのビーム位置安定度を直接確認

Figure 6: Cavity BPM on piezo mover for ATF2.

することは想定していない。ビームの位置安定度はルミノシティーの推移、つまりは衝突点で交差するビームからの反跳粒子を超前方検出器で計測することで行う。

一方、ATF2では仮想衝突点(近傍)にBPMを設置で きる^[15]ので、ナノメートルレベルのビーム位置安定化の 技術評価として直接確認できることが期待される。それに は 2 nm 分解能を持ち 150 nsec 後の次のバンチとの信 号分離が可能となる Q 値の低い空洞型 BPM が必要と なる。ビームサイズ測定用のレーザーとの干渉を避ける ように、仮想衝突点上流に一体化された BPM2 台、下流 に独立な1台が設置されている。仮想衝突点から直近の 前後の BPM はそれぞれ 10 cm 離れている。これらは全 て同じ真空チェンバー内に納められており、各々のブ ロックに位置調整用ピエゾステージが設置されていて、 BPM ブロックを+-150 um 動かすことができる。これにより、 BPM の相対位置調整や感度較正を行う (Figure 6)。 ビーム位置安定度の測定は、ビーム収束点を、いずれ かの BPM 位置に動かして実施する。

位置分解能 2 nm の BPM システムの実現は容易では ない。BPM 本体の形状精度は勿論のこと、信号処理回 路の理解と高度化が必須であり、実際、これらに多くの 時間が費やされている。位置測定範囲を確保した現在 の通常の試験では、主に信号処理系の制限から分解能 は 40 nm 台後半に留まる。分解能を追求した試験では、 1x10¹⁰ electron/bunch のビーム強度で 8 nm 程度が得ら れる評価されている。これが通常時の測定でも達成でき るように、BPM システムの高度化を努力していくが、2 nm の確認という評価方法の見直しも含めて intra-train feedback 技術の確立を進めて行くことになる。

前述したように、最終収束ビームライン上流(約50m)の取り出しラインには別のFONTシステムが設置されている。これによる後続バンチの位置フィードバックが下流の仮想衝突点 BPM でどの様に測定されるかという評価試験も進められている(Figure 7)。この試験では、固定位置への安定化というよりも、位置ジッターの相対的な改善として見て頂きたい。この BPM の位置では Feedback 無しで約420 mmのビーム位置ジッターがある。これを上流のFONT feedbackを用いると1/6の74 nmまで大きく改善している^[16]。これは試験条件下での BPM の読み出し

位置分解能と同程度であり、そのためにフィードバックの成果が留められていると解釈している。

ATF2 ビームラインでのビーム軌道の振る舞いから、リングからのビーム取り出しなど、上流の何らかのドリフトによりビーム軌道がドリフトしていることが分かっていた。この対策として、PLC 制御によるビーム軌道補正用空芯コイルが ATF2 ビームラインに設置された。これを逆に利用して、強制的にビーム位置を変動させ、FONT フィードバックで補正する試験も行われた。詳細は奥木が本学会で報告する^[17]。

これらに加えて、衝突点でのビームサイズ測定システムのタイミング系の変更を行い、2バンチ運転でも後続バンチのビームサイズ測定ができるように対応した。現在の空洞型 BPM 信号処理ソフトウェアーでは、2バンチ目のビーム軌道評価が不十分なため、最適なビーム調整が

Figure 7: Results of the FONT feedback at ATF2-IP.

できていない状態ではあるが、FONT フィードバックの ON/OFF で 2 バンチ目のビームサイズに有意な改善が 確認されている。

4. その他の技術開発

ATF2 ビームラインにおけるビーム取り出し毎の軌道 変動の要因の一つは、ダンピングリングでの軌道変動で あり、これを安定化することはナノメートルビーム技術開 発にとって重要である。ATF2 ビーム制御の精度が上が り、ダンピングリングの電磁石や真空チェンバーの冷却 水の温度(制御範囲+/-1)に比例してビーム軌道が変 動していることが明らかになった。そのため、冷却水クー リングタワーの制御を改善し、+/-0.1 の制御を実現して、 ダンピングリングでのビーム軌道を安定化した。詳細は 内藤が本学会で報告する^[18]。

ATF で実施されている装置開発は多種多様である。 その中から最近特に海外の研究者が中心となっている 課題を紹介する。

ILC にとってビーム開発と共に重要なのが測定器に対 するバックグラウンドの低減である。そのために最終収束 システムでのビームハローの理解、そのコリメーションを 目指した研究も行われている^[19,20]。2016 年 3 月に垂直 方向の Beam Collimator が ATF2 ビームラインに導入さ

PASJ2016 FSP019

れた。仮想衝突点下流部では反跳電子測定のため高感 度の Diamond Sensor^[21]の試験が行われている (Figure 8)。

Figure 8: Vertical beam halo distribution by changing the collimator position, measured by a Diamond Sensor.

床振動などの影響によるビーム位置ズレを高速で補 正するために、FONTシステムが導入されているが、ビー ムが来る前に、あらかじめ床振動を測定して対応する補 正キックを生成しておく feedforward 技術開発も進められ ている^[22]。これは FONT よりも更に高速な制御が必須と なる CLIC で必要となる技術である。ATF2の床振動を測 定するために高感度振動計 14 個(Figure 9)が CERN か ら持ち込まれている^[23]。

Figure 9: Vibration sensors installed in the ATF2.

ILC では衝突点以外のビームサイズ測定は、非破壊 型モニターであり大強度のマルチバンチビームに耐えら れるレーザーワイヤーが想定されている。これはシステム がやや複雑であり、より簡易なモニターの候補として Optical Difaction Radiation (ODR) monitor の開発が CERN により進められている^[24](Figure 10)。装置は 2016 年 3 月に ATF2 に設置された。サブミクロンの分解能を 目指して可視光から UV 領域の放射を利用する。

5. まとめ

先端加速器試験施設(ATF)では、国際リニアコライ ダー(ILC)で必要とされるナノメートル極小ビームの技術 開発をはじめ、各種の先端的ビーム診断装置やビーム 制御装置など、多くの加速器でも展開が期待される技術 開発を進めている。国際コラボレーション体制のもとで国 内外から多くの若手研究者が参加している。

ATF2 における第一の目標である垂直方向ビームサイズ 37 nm の実現では、Wakefield 対策、ビーム軌道の安定化、レーザー干渉縞型ビームサイズモニターの安定化などを進め、40 nm 台のビームサイズを良く再現することができている。

Figure 10: Schematic configuration of the ODR system installed in the ATF2.

第二の目標であるナノメートルレベルでのビーム位置 制御技術では、ATF2 仮想衝突点に導入した空洞型 BPM の分解能を改善する努力を続けると共に、Intratrain 高速フィードバックの技術開発を進めている。衝突 点でのビーム位置ジッターを 1/6 以下に低減するなど成 果が上がっている。

衝突点での測定器バックグラウンド低減に向けた機器 開発も始められるなど、ILC での総合的なナノメートル ビーム制御技術開発が進行している。

参考文献

- [1] ILC Technical Design Report (2013),
- https://www.linearcollider.org/ILC/Publications/Technical -Design-Report
- [2] "ATF2 Proposal", KEK Report 2005-2 (2005).
- [3] http://atf.kek.jp/twiki/bin/view/Main/ATFIntroduction
- [4] P. Bambade et al., Phys. Rev. ST-AB 13, 042801 (2010).
- [5] V. Balakin *et al.*, Phys. Rev. Lett., 74 2479 (1995).
- [6] P. Raimondi and A.Seryi, Phys. Rev. Lett. 86, 3779 (2001).
- [7] L. J. Nevay et al., Phys. Rev. ST-AB 17, 072802 (2014).
- [8] T. Shintake, NIM A 311, 455 (1992).
- [9] T. Suehara et al., NIM A 616, 1 (2010).
- [10] T. Okugi et al., Phys. Rev. ST-AB 17, 023501 (2014).
- [11] G. White et al., Phys. Rev. Lett. 112, 034802 (2014).
- [12] K. Kubo, Proceedings of IPAC'14, WEZA01 (2014).
- [13] S. Kuroda, Proceedings of ICHEP'14 (2014).
- [14] P. Burrows *et al.*, Proceedings of IPAC'14, TUPME009 (2014).
- [15] S. W. Jang et al., Proceedings of IPAC2016, Busan, Korea, THOAA02 (2016).
- [16] N. Blaskovic Kraljevic *et al.*, Proceedings of IPAC2016, Busan, Korea, THPOR035 (2016).
- [17] T. Okugi et al., 本加速器学会, MOOL04 (2016).
- [18] T. Naito et al., 本加速器学会, WEOL08 (2016).
- [19] R. Yang et al., Proceedings of IPAC2016, Busan, Korea, MOPMB008 (2016).
- [20] N. Fuster-Martínez et al., Proceedings of IPAC2016, Busan, Korea, THPOR030 (2016).
- [21] S. Liu et al., NIM A 832 (2016) 231-242.
- [22] D. Bett_, Proceedings of IPAC2016, Busan, Korea, WEPOR005 (2016).
- [23] D. Bett, Proceedings of IPAC2016, Busan, Korea, WEPOR005 (2016).
- [24] R. Kieffer *et al.*, Proceedings of IBIC2015, Melbourne, Australia, TUPB057 (2015).