PASJ2016 MOP101

炭素シンクロトロン高周波加速空胴運転制御パターン決定のための粒子トラッキン グシミュレーションによる炭素ビーム挙動解析

THE ANALYSIS OF CARBON BEHAVIOR WITH PARTICLE TRACKING FOR DECIDING OPERATION PATTERN OF RADIO-FREQUENCY ACCELERATING CAVITY IN A CARBON SYNCHROTRON

中島裕人^{#, A)}, えび名風太郎^{A)}

Yuto Nakashima ^{#, A)}, Futaro Ebina^{A)}

^{A)} Hitachi, Ltd., Research & Development Group, Center for Technology Innovation - Energy

Abstract

Hitachi has been developing a carbon synchrotron system for particle therapy. Acceleration frequency of this system is discretely updated by the B-clock signal, which is produced per a certain amount of change of bending magnetic fields (ΔB). We demonstrated particle tracking simulation to confirm the influence of the amount of ΔB on acceleration efficiency. As the result, the acceleration efficiency of 430MeV/u C⁶⁺ beam is estimated to be more than 95% under a particular set of conditions including, ΔB and operation patterns.

1. はじめに

日立ではこれまでに、炭素線治療用シンクロトロンの 設計を行ってきた[1]。本シンクロトロンは、偏向電磁石の 磁束密度の変化 ΔB ごとにパルスを発生させ、そのパル スに基づき加速周波数を離散的に更新する(B クロック 制御)。 ΔB の大きさによっては加速効率の低下が懸念さ れる。適切な ΔB の大きさを評価するため、B クロック制 御を模擬した粒子トラッキングシミュレーションにより、加 速効率を算出した。

2. 粒子トラッキングシミュレーション

炭素シンクロトロンの設計パラメータをそれぞれ Table 1 に示す。本シンクロトロンは、ライナックから入射された 運動エネルギー4MeV/uのC⁶⁺ビームを140~430MeV/u まで加速する。ビームはその後、出射用セプタム電磁石 を通じて、高エネルギービーム輸送系へと輸送される。

Table 1: Carbon Synchrotron Parameters

Parameters	Unit	Value
Circumference	m	56.8
Injection beam energy	MeV/u	4
Extraction beam energy	MeV/u	140 - 430
Bending magnet bending radius	m	4.011

ビームの進行方向に高周波加速電圧が印加された加 速空胴を通過することで、ビームは加速される。加速電 圧や偏向電磁石の磁場強度は、各々の運転制御パター ンによって制御される。今回実施したシミュレーションは、 加速を加味したビーム進行方向の1次元粒子トラッキン グコードを用いて行った。当コードでは位相空間上での 粒子初期分布などの初期パラメータ及び、加速電圧や 偏向電磁石の運転制御パターンの読み込み後、それら を初期値として各時刻における粒子の運動を計算する。

解析粒子数は1000 であり、粒子の位相空間上の初期 分布として、運動量偏差 dp/p 方向においては $\pm 1\sigma=0.1\%$ のパラボラ分布、ビーム進行方向においては、一様分布 で分布させた。主な初期パラメータの条件を Table 2 に 示す。B クロック制御は、偏向電磁石の磁場強度が指定 した ΔB だけ変化する毎に、加速周波数を離散的に変化 させることで模擬した。また、本シミュレーションでは空間 電荷を考慮した。ビームローディングについては考慮し ていない。

Table 2: Tracking Simulation Parameters

Parameters	Unit	Value
Simulated particle	-	C ⁶⁺
Simulated particle number	-	1000
Current of beam orbiting in the synchrotron	mA	3.3
Momentum spread of injected beam (1σ)	%	0.1
Maximum ramp rate of bending magnetic field	T/s	3.0

3. 加速効率の ΔB 依存性

まず ΔB としては、当社の従来の陽子シンクロトロンと 同じ加速制御機器を用いた場合の最小値である ΔB =2.74×10⁻⁵ [T]を用いた。結果、RF バケットへの C⁶⁺粒子 捕獲時に最大 700V、加速時に最大 2300V を印加する 加速電圧制御パターン(Figure 1)のもとで、430MeV/uの C⁶⁺ビームに対して加速効率 95%以上となることを確認し た。

[#] yuto.nakashima.cp@hitachi.com

Proceedings of the 13th Annual Meeting of Particle Accelerator Society of Japan August 8-10, 2016, Chiba, Japan

PASJ2016 MOP101

Figure 1: Acceleration voltage pattern.

また、このときの偏向電磁石磁場強度パターンを Figure 2 に示す。以降、シミュレーションへ入力する運転 制御パターンとして、これらと同じパターンを用いた。

Figure 2: Bending magnetic field pattern.

続いて、 ΔB に対する加速効率の依存性を調べるため、 値を 2.74×10⁻⁵ から増大させた場合の加速効率を求めた。 このとき ΔB が 1.00×10⁻⁴ [T]を超えると、加速効率は 0.95 を下回ることが確認された。以下、 $\Delta B = 2.74 \times 10^{-5}$ [T]、 1.00×10⁻⁴ [T]の場合におけるビームバンチの挙動から、 ΔB の増大時に加速効率が低下する要因を検証する。

まず、各時刻におけるRFバケット内に含まれる粒子数 を $\Delta B = 2.74 \times 10^{-5}$ [T]、 1.00×10^{-4} [T]の場合で比較した。

Figure 3: Number of particles inside RF bucket.

Figure 3 より、 $\Delta B = 1.00 \times 10^4$ [T]の場合は、バケット内 への粒子の捕獲が終了し、加速が始まる時刻 t =10[ms]以降で、RF バケット内の粒子が減少し始めること がわかる。続いて、加速開始直後 (t = 14[ms])の、そ れぞれの場合の位相空間上での分布を Figure 4 に示 す。Figure 4 中の実線は RF バケットを表している。

Figure 4: Phase space distribution of particles (t = 14[ms]).

Figure 4 (a)に示すように、 $\Delta B = 2.74 \times 10^{-5}$ [T]の場合は、 バンチがバケット中央付近にまとまって存在している。一 方、 $\Delta B = 1.00 \times 10^{-4}$ [T]の場合は、Figure 4 (b)に示すよう に、バンチはテールを引いていることがわかる。この分布 の違いが生じる過程を詳しくみるため、加速開始時刻か らの 2[ms]ごとの位相空間上での粒子分布の時間変化 を $\Delta B = 1.00 \times 10^{-4}$ [T]の場合について確認した(Figure 5)。

Figure 5: Phase space distribution of particles just after acceleration started ($\Delta B = 1.00 \times 10^{-4}$ [T]).

PASJ2016 MOP101

Figure 5 (b)より、加速開始後バンチ端部から徐々に テールを引いていることがわかる。偏向電磁石磁場強度 の時間変化率が同じ条件において、より大きな ΔB を設 定した場合では、加速周波数更新頻度がより低くなるた め、RF バケット中心に対するバンチの dp/p 方向のずれ がより大きくなる。その結果、バンチに振幅の大きなダ イポール振動が生じ、バンチ端部にテールが生じたと考 えられる。その後、バケット端部の付近の粒子からバケッ トから溢れていき、最終的な加速効率が低下している。

Figure 6: Center of mass of beam bunch oscillation.

Figure6 にビームバンチの重心位相の振動の様子を 示す。 $\Delta B = 2.74 \times 10^{-5}$ [T]、 1.00×10^{-4} [T]のどちらの場合 も、バンチ重心位相は同期位相を中心にダイポール振 動しているが、後者については振幅がより大きい。後者 の場合は、テールの発達に伴いバンチ重心がバケット端 部に偏ることで、振幅がより大きくなっていると考えられる。

最後に、 $\Delta B = 2.74 \times 10^{-5} \sim 2.00 \times 10^{-4}$ [T]の場合の加速 効率を Figure 7 に示す。 ΔB の増大に伴い加速効率が低 下する傾向がみられる。この要因としては、 ΔB の増大に 従い低下していく加速周波数更新頻度の影響により、 RF バケットに対する dp/p 方向のバンチのずれが、より大 きくなっていったためと考えられる。

Figure 7: Acceleration efficiency of 430MeV/u C⁶⁺ for each ΔB value.

4. まとめ

炭素シンクロトロンについて、B クロック制御時の加速 効率を求めるため、粒子トラッキングシミュレーションを実 施した。結果、当社の従来の陽子シンクロトロンと同等の 加速制御機器を用いることで達成される最小の ΔB のも とで、95%以上の加速効率で C^{6+} ビームを 430MeV/u ま で加速可能な見込みを得た。また、 ΔB と加速効率の依 存性を調べ、 ΔB の増大に従って加速効率が低下するこ とを確認した。

今後は、C⁶⁺ビーム減速時におけるBクロック制御の影響を調査する予定である。

参考文献

[1] F. Noda et al, "炭素線治療用小型シンクロトロンの概念設計", Proceedings of the 8th Annual Meeting of Particle Accelerator Society of Japan, Tsukuba, Aug. 1-3, 2011, WELH03.