J-PARC ハドロンビームライン用回転円板型標的の開発

DEVELOPMENT OF ROTATING-DISK TARGET FOR J-PARC HADRON BEAMLINE

岩崎 るり^{# A)}, 上利 恵三 ^{A)}, 青木 和也^{A)}, 家入 正治^{A)}, 加藤 洋二^{A)}, 里 嘉典^{A)}, 澤田 真也^{A)}, 高橋 仁^{A)}, 田中 万博^{A)}, 豊田 晃久^{A)}, 広瀬 恵理奈^{A)}, 皆川 道文^{A)}, 武藤 亮太郎^{A)}, 森野 雄平^{A)}, 山野井 豊^{A)}, 渡邉 丈晃^{A)}

Ruri Iwasaki^{# A)}, Keizo Agari ^{A)}, Kazuya Aoki ^{A)}, Masaharu Ieiri ^{A)}, Yohji Katoh ^{A)}, Yoshinori Sato ^{A)}, Shin'ya Sawada ^{A)}, Hitoshi Takahashi ^{A)}, Kazuhiro Tanaka ^{A)}, Akihisa Toyoda ^{A)}, Erina Hirose ^{A)}, Michifumi Minakawa ^{A)}, Ryotaro Muto ^{A)}, Yuhei Morino ^{A)}, Yamanoi Yutaka ^{A)}, Hiroaki Watanabe ^{A)} ^{A)} Institute of Particle and Nuclear Studies, KEK

Abstract

We have developed a new production target with a beam power up to 150 kW or more for the Hadron Experimental Facility at J-PARC. A primary candidate of the new target is a rotating disk in which platinum or gold is bonded on a periphery of a nickel disk edge. As for a cooling method of the disk, helium-gas cooling is better than water cooling from the viewpoint of controls of corrosion and radioactive materials. However, cooling efficiency for the rotating disks by helium gas, that is "heat-transfer coefficient", is lower than that by the water cooling, and very difficult to theoretically estimate. Therefore, we have constructed a test bench to measure the heat-transfer coefficient of the rotating disk, and established an estimation method. In this report, the basic design of the new production target and the estimation of the heat-transfer coefficient in a simple setup are presented.

1. はじめに

J-PARC ハドロン実験施設は、主リングで 30 GeV まで 加速した陽子ビームを約 2 秒かけて取り出し、それを一 次標的を用いて様々な二次粒子を生成し実験ユーザー に供給している。陽子ビームの強度は増強を重ねて 2016 年 6 月には 42 kW に達した。今後さらに増強が計 画されており、より大強度ビームに耐えられる標的の設 計、開発が必要となる。

現在の標的は間接水冷方式であり、想定する入射 ビーム強度は最大 50 kW、標的におけるビームロスは 50%として設計されている[1]。

今後のビーム増強では、想定強度は最大 150kW、 ビームロスは 40%以上として設計、開発を行っている。 冷却方法は直接水冷またはガス冷却を考えている。水 冷は冷却効率がよいという利点があるが標的本体、周辺 部品の腐食、放射能濃度(トリチウム)が高くなった水の 取り扱いが問題となる。一方、ヘリウムガス冷却はトリチウ ム等の生成が少ないという利点があるが、冷却効率が未 知数のためガス循環装置の R&D が必要になる。それぞ れの利点と問題点を考えて、可能であればガス冷却を採 用したいと考えている。そのために、回転標的の模擬装 置を製作し熱伝達率(冷却効率)の測定を行った。

2. 標的構造

2.1 現在の標的

現在の標的の写真と模式図を Figure 1 に示す。標的材である金の大きさは高さ6mm、幅15mm、奥行

き 66 mm である。その金を冷却水配管が埋め込まれ た銅ブロック上に接合して冷やす間接水冷型構造に なっている。金、銅、ステンレス配管の接合は拡散 接合で行っている。金は熱応力緩和のためにビーム 軸方向に 6 分割されていて、それぞれに 1 つずつ シース熱電対が取り付けられている。さらに、万が 一標的材に劣化が見られた場合があっても遮蔽体を 開けることなく遠隔からすぐに標的を交換できるよ うに、二山構造にして標的容器外の駆動装置によっ て水平方向に動かすことができるようになっている [1]。

Figure 1: Photograph and cross sectional view of the current production target [1].

標的への要請として二次ビームの品質から、標的 でのビームサイズは $\sigma_x=2.5 \text{ mm}, \sigma_y=1.0 \text{ mm}$ となる が、受けられる最大ビーム強度では局所的な熱負荷

[#] ruri.iwasaki@kek.jp

Proceedings of the 13th Annual Meeting of Particle Accelerator Society of Japan August 8-10, 2016, Chiba, Japan

PASJ2016 TUP041

が大きくなってしまう。現在使用している固定標的 では常に同じ場所にビームが入射され、標的材の温 度が上がってしまうことで最大ビーム強度が決まっ ている。現在のビーム運転は、5.52 秒サイクルで、 そのうち 2 秒間 DC ビーム(連続ビーム)が標的に 入射される。

2.2 回転標的の開発

現在考えているビーム強度 150 kW に対する新標的 の構造は Figure 2 である。回転円板型にすることで、円 板円周方向に熱負荷を分散させ温度上昇を低減するこ とができるのが最大のメリットである。ニッケル円板の周り に 6 mm 厚程度の金またはプラチナを接合した円板型を 考えている。ビームは金またはプラチナ部分に入射する。 この円板を厚み 21 mm(1枚)と厚み 11 mm(3枚)をビー ム軸方向に並べて全体として 54 mm の厚みになるように する。円板同士の隙間は 3 mm 程度開けることによって 冷却しやすく、粘性に巻き込まれないようにしている。こ の隙間距離、冷却方法などの条件は熱伝達率測定実験 によって検討を行っていく予定である。

Figure 2: Structure of a rotating-disk target.

2.3 回転標的の強度評価

Figure 3 のような円板直径 346 mm、総板厚 54 mm の回転標的に強度 150kW、σ_x=2.5 mm、σ_y=1.0 mmの ビームを当てる解析を行った。回転速度は現在想定 している 120 rpm とした。ビームが入射する標的部 分は金とプラチナの両方の場合を考えた。また、冷 却方法は直接水冷とヘリウムガス冷却の 2 つの方法 で比較をした。冷却水とヘリウムガスの入口温度は 30 ℃としている。空気との熱伝達率は 10 W/m²/K、 水との熱伝達率は 5000 W/m²/K 程度であると考えら れる。ヘリウムとの熱伝達率は未知数であるため 100 W/m²/K と仮定する。

Figure 3: Cooling conditions by water and helium-gas in thermal analysis.

直接水冷方式の場合の温度と応力の解析結果を Figure 4 に示す。金の最大温度は 72 ℃、最大応力は 6.8 MPa、プラチナの最大温度は 78 ℃、最大応力は 5.8 MPa であった。また、ヘリウムガス冷却方式の 場合の温度と応力の解析結果を Figure 5 に示す。金 の最大温度は 200 ℃、最大応力は 15 MPa、プラチナ の最大温度は 217 ℃、最大応力は 18 MPa であった。 回転標的の強度の評価を Table 1 にまとめる。

Figure 4: Results of the thermal analysis by the water cooling.

Figure 5: Results of the thermal analysis by the helium-gas cooling.

PASJ2016 TUP041

冷却方法	標的材質	最大温度 (室温30℃)	最大応力
直接水冷 (5000W/m²/K)	金	72°C	6.8 MPa
	プラチナ	78°C	5.8 MPa
Heガス冷却 (100W/m²/K)	金	200°C	15 MPa
	プラチナ	217°C	18 MPa

Table 1: Results of the Thermal Analysis

金と銅の接合部における破断強度は 229 ℃で 128 MPa であるため、試験データはないが、ニッケルと金、 ニッケルとプラチナの接合部における破断強度は 229 ℃で 100 MPa 程度と仮定して検討を進める。これに ついては、別途ニッケルと金、ニッケルとプラチナの接合 部の強度試験が必要である。破断強度が 100 MPa 程度 である想定し、安全率 2 とすると、許容応力は 50 MPa 程度 をなる。Table 1 を見て分かるように、この過程のもとで は発生最大応力は 50 MPa よりも小さいので直接水冷方 式は問題がない。また、ビーム強度が 150 kW でも 100 W/m²/K の熱伝達率(冷却効率)が得られればヘリウムガ ス冷却でも問題がないことも分かる。

冷却方法について2つの方法を比較してみる。まず、 直接水冷方式は冷却効率が良いという利点がある。その 一方、冷却水循環装置のR&Dが必要となり、リザー バータンクなしで汲み上げ循環する方法、イオン交換樹 脂や復水器の使用方法、脱ガス器と放射能を含むガス の取り扱い方など多くの検討事項がある。他にも、標的 本体や周辺部品の腐食の問題、放射能濃度が高くなっ た水の取り扱いが問題となる。一方、ヘリウムガス冷却方 式は水素ガスやトリチウムなど余計なものの生成が少な いという利点がある。しかし、ヘリウムガスによる熱伝達率 (冷却効率)がこの形状では未知であること、大量のヘリ ウムガスを循環させる装置のR&Dが必要になると言う問 題がある。ヘリウムガス冷却の確立を目指して、まずヘリ ウムによる熱伝達率を測定する必要がある。

3. 熱伝達率測定

3.1 測定装置

Figure 6 および Figure 7 のような回転標的の模擬装置 を作り熱伝達率の測定を行った。模擬標的円板の材質 はアルミニウムで外径 346 mm、厚みは 15 mm である。 アルミニウム円板は厚さ方向に 2 分割したものを 1 枚に 組み合わせて使用している。片側にはヒータ用の溝を掘 り、100 W 程度のシリコンコードヒータをサーマルグリスを 塗布して埋め込んでいる。その際、なるべく円板全体の 温度が一様に上がるように Figure 6 のような形で埋め込 んだ。円板は輻射による熱放出を減らすために、外面は バフ研磨を行っている。輻射率(全輻射率)は、輻射計 (ジャパンセンサー製 TSS-5X)により事前に測定を行っ た結果 0.076 であった。さらに円板からの熱伝導により熱 移動を減らすために、ガラスエポキシ製の断熱ワッ シャー(熱伝導率 0.471 W/m/K)及び熱伝導率の低いス テンレス製ボルト(熱伝導率 16 W/m/K)を用いてロータ リーアクチュエータと連結している。

Figure 6: Schematic drawings of the test bench of rotating-disk target.

Figure 7: Photograph of apparatus.

Figure 8 のようにアルミニウム円板上に4箇所にK型 熱電対を設置して円板表面の温度を測定する。回転機 構はPCからの制御で動くステッピングモータを使用した 中空ロータリーアクチュエータを使用している。ヒータの 入力と熱電対の読み出しについてはカーボンブラシを 使った32極のスリップリングを使って、最大ヒータ4系統 と熱電対12系統が取り付けられるようになっている。今 回の測定では回転速度は静止(0rpm)~200 rpmで行っ た。強制冷却有無の違いを見るために簡易的な方法とし て、直径90 mmの吹き出しの送風機を設置し円板に5.8 m/s 程度の風を送る。

今回の測定では空気中で1枚のアルミニウム円板 (15mm 厚)の熱伝達率測定を行った。これは熱伝達率 の測定方法の妥当性を検証する必要があるため、確立 している半経験式を適用するための単純な条件の測定 である。円板は床と垂直になるように設置した。変えた条 件は回転速度と送風の有無である。

Proceedings of the 13th Annual Meeting of Particle Accelerator Society of Japan August 8-10, 2016, Chiba, Japan

PASJ2016 TUP041

Figure 8: Positions of thermocouple on the aluminum disk.

3.2 測定結果

円板上の4つの熱電対の測定結果を Figure 9 に示 す。条件は回転数120 rpm、送風なしである。この結果よ り、ほぼ4つの熱電対に温度差がないことからヒータに よって円板の温度が一様に出来ている。スリップリングを 通した温度測定では影響(ノイズ等)は観測されなかっ た。また、事前に黒色アルマイトを施した円板について Figure 10 に示すようなサーモグラフィを使って円板温度 の一様性を確認している。

Figure 11 に代表的な比較のデータをまとめる。回転な しかつ送風なしのデータ、120 rpm 回転かつ送風なしの データ、120 rpm 回転かつ送風ありのデータの3 種類で ある。時間 0 秒の時がヒータ ON 時である。実際の測定 では様々な回転数で送風有無の組み合わせでデータを 取得している。

Figure 9: Temperature histories at the each point on the disk as shown in Figure 8 at the rotation speed of 120 rpm without blower.

Figure 10: Temperature distribution of black disk measured by a thermography.

Figure 11: Temperature histories under three typical conditions: 0 rpm without blower, 120 rpm without a blower and 120 rpm with blower.

3.3 熱伝達率の算出

測定した温度結果より熱伝達率を求める。まず、時間 と温度変化のグラフの上昇部分を

$$T(t) = \Delta T \cdot \left(1 - e^{-\frac{t}{\tau}}\right)$$

でフィッテイングして平衡温度差ΔT を算出する。また、 ヒータ熱量Qは輻射分、熱伝導分、熱伝達分の合計とな る。したがって、ヒータ熱量Qは

$$Q \approx \sigma \cdot A \cdot \left(T^{4} - T_{\text{周囲}}^{4}\right) \cdot \varepsilon_{1} + \lambda \cdot \frac{A}{L} \cdot \Delta T + h \cdot A \cdot \Delta T$$

$$\sigma : \stackrel{\sim}{}_{:} \stackrel{\sim}{_{:}} \stackrel{\sim}{_{:}} \sigma : \stackrel{\sim}{_{:}} \stackrel{\sim}$$

T_{周囲}:初期温度 (K)、 *ε*₁:輻射率、*L*:長さ (*m*)

 λ : 熱伝導率 (W/m/K), h: 熱伝達率 $(W/m^2/K)$ となる。 ヒータ熱量Qは平衡時の抵抗値と電流値から I^2 ・ Rで算出している。 ここで、 アルミニウム円板の輻射率は 実測で 0.076 である。

例えば、120 rpm 回転で送風なしの場合、平衡温度は 47.9 ℃と算出され、ヒータ熱量は103.2 W、輻射分は5.5 W、熱伝導分は1.6 W となるので熱伝達分は96.1 W と 推定される。これを平衡温度と円板の表面積を用いて計 算すると熱伝達率9.9 W/m²/K が求まる。熱伝導による熱 移動量は断熱ワッシャー及びステンレス製ボルトを通っ て室温に接続されるものとして計算により求めている。こ のように様々な条件において熱伝達率を求めた結果は、 送風なしが Table 2、送風ありが Table 3、これらの結果を Figure 12 のグラフにまとめる。送風なし(自然対流による 冷却)の場合、円板を回転させることによって熱伝達率 は最大 2 倍程度大きくなることが分かった。また、送風に よる強制冷却の場合、熱伝達率は回転数にあまり依存し ないという結果が得られた。

鉛直平板かつ回転なしかつ送風なしの場合の熱伝達 率の経験式は

$$h = 0.59 \cdot Ra_{L}^{\frac{1}{4}} \cdot \frac{\lambda}{L_{C}}$$

Ra_L:レイリー数

と与えられているから、ここから値を計算すると 7.0 W/m²/K と求まる。この条件の時の測定で得られた熱伝 達率は 6.3 W/m²/K であった。また、平板かつ回転なしか つ送風ありの場合の熱伝達率の経験式

$$h = 3.86 \times \sqrt{\frac{ 流速(m/s)}{ 流れ方向の長さ(m)}}$$

と与えられているから、22.4 W/m²/K と求まる。この条件 の測定で得られた熱伝達率は20.5 W/m²/K であった。し たがって、送風なしかつ回転なし(自然対流による冷却) の場合と送風ありかつ回転なし(層流による強制冷却)の どちらも経験式と近い数字になっているため、熱伝達率 の測定方法としては妥当であると考えられる。

Table 2: Result of Heat-transfer Coefficients without a Blower

回転数	平衡温度	熱伝達率
(rpm)	(°C)	(W/m²/K)
0	72.7	6.3
10	70.7	6.4
50	67.2	6.8
120	47.9	9.9
200	37.0	13.4

Table 3: Result of Heat-transfer Coefficients with a Blower.

回転数	平衡温度	熱伝達率
(rpm)	(°C)	(W/m²/K)
0	25.1	20.5
50	26.1	19.1
120	24.9	20.0
200	22.3	21.9

Figure 12: Result of heat transfer coefficients

4. まとめ

現在 50 kW 対応の間接水冷型固定標的を使用しているが、将来のビーム強度増強のために、150 kW に対応した直接冷却型の回転円板標的の開発を進めている。

冷却方式としては、直接水冷よりも生成される放射性物質が少なく、腐食等の問題も少ないヘリウムガス冷却 方式を第一候補として考えている。

現在は設計上最も重要な冷却効率を決める円板の熱 伝達率の測定を進めている。これまでに測定装置の構 築を行い、基本データを取得し測定方法を確立すること ができた。今後、強制冷却の方法を具体的に検討し試 験を進めていく予定である。また、今回は円板1 枚で測 定を行ったが、より回転標的の実機と同じ状態にするた めに複数枚円板で試験を行う定である。複数枚円板の 場合は、円板同士の隙間を変えて熱伝達率(冷却効率) の測定をして、最適化を行う必要がある。

その他にも、実際のビーム運転時における円板の温 度測定の確立、回転機構の開発なども進めていく予定 である。また、金とニッケル、プラチナとニッケルの接合方 法の確立及び接合部の強度評価の試験も行いたいと考 えている。

参考文献

 H. Takatashi *et al.*, "Indirectly water-cooled production target at J-PARC hadron facility", Journal of Radioanalytical and Nuclear Chemistry, Sep 2015, Vol. 305, Issue 3, pp 803-809.