PASJ2016 TUP047

NEA-GaN 系スピン偏極電子源の実現可能性の追求

SEARCH FOR FEASIBILITY OF THE NEA-GaN TYPE SPIN POLARIZATION ELECTRON SOURCE

宮内智寬^{#, A)}, 山本尚人^{B)}, 金秀光^{B)}, 真野篤志^{C)}, 保坂将人^{C)}, 持箸晃^{A,C)}, 高嶋圭史^{A,C)}, 加藤政博^{D,C,B)}

Tomohiro Miyauchi^{#, A)}, Naoto Yamamoto^{B)}, Xiuguang Jin^{B)}, Atsushi Mano^{C)}, Masahito Hosaka^{C)}, Akira Mochihashi^{A,C)}, Yoshifumi Takashima^{A,C)}, Masahiro Katoh^{D,C,B)} A) Graduate School of Engineering, Nagoya University B) High Energy Accelerator Research Organization, KEK C) Synchrotron Radiation Research Center, Nagoya University D) UVSOR Facility, Institute for Molecular Science

Abstract

We are developing a spin polarization electron source having high spin polarization and high quantum efficiency. From the experiment using the conventional GaAs-based sample and the analysis, we understood that fcc-GaN was promising as a next-generation electronic source material. However, we cannot make superlattice of fcc-GaN of sufficiently large size by the current coating technology. Therefore we measured a spin polarization of the electron beam using a sample of hcp-GaN with the superlattice. As a result, the spin polarization was almost zero when we irradiated a laser of wavelength 405nm and 454nm in a sample of bandgap 2.78 eV. Here we explain the detail of experiment using GaN and the consideration for its results.

1. 研究背景

1.1 はじめに

我々は、90%以上の高いスピン偏極度と数%程度 の量子効率を満たすスピン偏極電子源の開発を目指 している。これまでに我々が開発した GaAs 系のス ピン偏極電子源は、高いスピン偏極度や良好な量子 効率[1]、高輝度と言った特徴を持っており、その応 用先として素粒子物理実験の ILC 計画[2]や、電子顕 微鏡やスピントロニクスを利用した材料分析機器[3] などが挙げられる。

我々の研究グループではこれまで、GaAs を基本 材料に用いた電子源の研究を行ってきた。その結果、 今後更に高いスピン偏極度と量子効率を兼ね備えた 電子源を開発するには、GaAs 系の半導体では限界 があると考え、それに代わる材料として GaN に着目 した。本発表では、従来の GaAs 系サンプルの研究 結果と共に GaN に着目した経緯を述べ、GaN 系サン プルを用いたスピン偏極度測定実験の詳細、結果に ついて報告する。

1.2 GaAs 系電子源の研究結果

現在、我々は歪み補償超格子構造を持った GaAs 系サンプルにて、スピン偏極度 92%、量子効率 1.6%を達成している[1]。このサンプルは Figure1 に 示すように GaAs と GaAsP を交互に積層した超格子 構造であることに加え、格子定数が超格子層の中間 の大きさであるバッファー層 AlGaAsP を用いること で、超格子の積層に伴う歪みの蓄積を緩和している [4]。この歪み補償超格子構造の採用により、高い結 晶性を維持したまま従来よりも活性層の膜厚を増加 させることが可能となり、約 90%のスピン偏極度を 保ちながら 1%を超える量子効率を同一のサンプル で実現するに至った。

Figure 1: Structure of GaAs/GaAsP strain-compensated super lattice photocathode.

歪み補償超格子構造では結晶性を維持したまま、 最大で720 nmの厚さを持つ活性層を製膜することに 成功している。しかし、サンプルのバンド構造は維 持されているにも関わらず、300 nmを超える膜厚で はスピン偏極度が低下する傾向が見られた[5]。そこ で我々は、膜厚の増加に伴うスピン偏極度の低下要 因を、電子が半導体中を拡散する際に起こるスピン 緩和であると仮定し、スピン偏極度と膜厚の関係性 を算出した。その結果、現実的な半導体のスピン緩 和時間と電子拡散速度を用いることで、実験結果を 良く再現する結果が得られた (Figure2)[6]。

[#] miyauchi.tomohiro@j.mbox.nagoya-u.ac.jp

Figure 2: Relationship between spin polarization and the super lattice thickness.

1.3 GaN 系サンプルの実験動機

これまでの研究結果から、高スピン偏極度と高量 子効率を両立する電子源は、多くの光を吸収し且つ、 スピン緩和の影響が小さい必要があると考えられる。 しかし、従来の電子源を超える性能を実現するには、 GaAs 系の材料では限界がある。

そこで我々は次世代のスピン偏極電子源の基本材料として、光励起が可能な半導体の内fcc-GaNが有望であると考えた。Table1に示すように、fcc-GaNはスピン緩和時間と吸光係数共にGaAsよりも大きな値をもっており、電子源の高性能化に期待が持てる。一方、hcp-GaNはGaAsよりもスピン緩和時間が著しく小さいので、スピン偏極電子源には不向きであると予想される。

Table 1. Thysical Hoberty of Gan and GaA		Table	1: Phy	vsical	Property	of Gal	J and	GaA
--	--	-------	--------	--------	----------	--------	-------	-----

	<i>y 1 y</i>	
Material	Spin relaxation time	Absorptivity
	[ps]	$[cm^{-1}]$
fcc-GaN	8000[7]	$1 \sim 2 \times 10^{5}[8]$
hcp-GaN	0.47[7]	$1 \sim 2 \times 10^{5}[8]$
bulk-GaAs	300[9]	$1 \times 10^{4} [10]$

しかし、現在の成膜技術では実用的な大きさの高純度 fcc-GaN を作成することは困難であり、工業製品や研究で用いられている GaN のほとんどが六方晶である。一方で、フォトカソードとして hcp-GaN を詳細に調査した例は少ない[11]上に、そのフォトカソードから生成された電子ビームのスピン偏極度に関する報告例はない。

こうした現状を踏まえて我々は、hcp-GaN 系サン プルを用いて電子ビームの生成とそのスピン偏極度 の測定を行った。

2. NEA-GaN フォトカソードについて

2.1 実験サンプル

我々が実験に用いたサンプル構造の模式図を Figure3 に示す。サンプルは、有機金属気相成長法 (MOVPE 法)を用いて作成されている。サンプル の構造は、サファイア基板の上にバッファー層と ドープされていない GaN が積層されており、それら の上に活性層として Mg が 3×10^{19} cm⁻³の濃度で ドープされた六方晶 GaN と GaIn_{0.2}N が、厚さ 3 nm で交互に 20 組積層されている。また、サンプルの裏 面は鏡面仕上げになっているので、背面照射型の電 子銃で実験が可能である。

Figure 3: Schematic view of the GaN type sample used for the experiment.

今回の実験に用いたサンプルは、株式会社パウ デックで製作されたものである。また、株式会社パ ウデックにて測定されたサンプルの PL スペクトル を Figure4 に示す。サンプルは 2inch のウエハーに製 膜されており、実験にはこれを 10 mm 四方のサイズ に切り出して使用した。その部位の PL ピークは 446 nm であり、サンプルのバンドギャップは 2.78 eV と 推測された。また、PL ピークの幅は FWHM で 20.7 mm であった。

Figure 4: PL spectrum of the GaN/GaInN sample.

2.2 バンド構造と電子の放出機構

本研究で用いた NEA-GaN 系フォトカソードでは、 NEA-GaAs 系と同様に、電子は下記の三つのプロセ スを経て真空へと放出される[10]。スピン偏極した 電子ビームが放出される様子を Figure5 に示す。

I. 円偏光レーザーの入射により、価電子帯に存在 する電子が伝導帯へと励起される。(励起過程)

Proceedings of the 13th Annual Meeting of Particle Accelerator Society of Japan August 8-10, 2016, Chiba, Japan

PASJ2016 TUP047

- II. 励起された電子は伝導帯にて半導体中を拡散し、 真空との界面まで到達する。(拡散過程)
- III. 半導体表面に作成した、負の電子親和性を持つ NEA 表面(Negative Electron Affinity)により、 電子が真空中へと脱出する。(脱出過程)

Figure 5: Band structure of the photocathode and schematic of polarized beam generation.

また、スピン偏極電子ビームの生成には、「超格 子構造」と「NEA 表面」の二つの重要な要素がある。 バルク GaN において分子軌道の縮退している価電子 帯最上端部に存在する電子は、超格子サンプルでは 有効質量の違いから縮退が解けて価電子帯最上端に 一定の分離幅を隔てて存在する。このバンド構造に おいて適切なエネルギーを持った円偏光レーザーを 入射することで、スピンの揃った電子が励起される。 一方、NEA 表面は真空中でサンプルの清浄表面にセ シウムを蒸着させることで製膜でき、真空準位が伝 導帯下端よりもエネルギー的に下位に位置する。こ の表面状態により、半導体中の励起された電子は真 空中へと脱出することが可能となる[12]。

3. 実験

3.1 NEA 表面作成

実験ではまず、Figure6 に示す装置にて、NEA 表面の作成を行った。サンプルはヒーターと電極を備えたフォルダにセットされ、サンプルの正面にセシウムディスペンサーが設置されている。実験は全て真空中で行われ、真空度は1×10⁻⁸ Pa である。励起に用いるレーザーは、真空容器に設けられたビューポートからサンプルの正面に向けて照射する。

NEA表面の作成では、初めにサンプルを430 ℃で 1時間ほど加熱洗浄をした後、室温まで自然冷却し た。なお、温度はサンプル自体ではなくサンプルか ら離れた位置において計測した為、実際のサンプル 温度よりも数十度から百度近く低いと予想される。 その後、真空度が8×10⁻⁸ Pa 付近の状況下で、セ シウムディスペンサーを用いてサンプルの表面にセ シウムを 1時間ほど蒸着させた。また、セシウムの 蒸着中は、波長 405nm の半導体レーザーをサンプル に照射し、-500 V のバイアス電圧を印加しながら試 料電流を測定することで、量子効率をモニタした。

Figure 6: Schematic of producing of the NEA surface. 今回の実験における NEA 表面作成時の、セシウム の蒸着時間と量子効率の関係を Figure 7 に示す。今回 は量子効率が 1%近くの NEA 表面が得られた。

Figure 7: Change of the quantum efficiency for the cesium deposition time.

NEA 表面は真空中の残留ガスや、電子ビームを放 出することによるイオン逆流などの影響で劣化する ことが知られている。今回、スピン偏極度を測定す る際、引き出し電流を 60 nA 程度で 6 時間程度、電 荷量にして約 1.3 mC を連続して放出することが可能 であった。また、NEA 表面の寿命や量子効率は、加 熱洗浄の温度や時間に大きく影響されることが分 かっている。GaN 系サンプルは 500℃程度まで耐え られるので、厳密なサンプル温度を測定しながら加 熱洗浄の条件を最適化することによって、更に長寿 命で高い量子効率の NEA 表面が実現可能であると考 えている。

3.2 電子銃

NEA 表面を作成した後、スピン偏極度を測定する 為に電子銃へとサンプルを移送する(Figure8)。この 時、NEA 表面を作成するチャンバーと電子銃はバル ブを隔てて連結しており、備え付けられたロッドを 用いて真空を破らずに移送できる。電子銃は真空度 が8×10⁻¹⁰ Pa 程度であり、最大で-30 kV の電圧を サンプルに印加できる。

励起光として用いるレーザーは、電子銃大気側に マウントされた λ/4 板により直線偏光から円偏光に 変換された上で真空チャンバーに導入される。さら にレーザーはサンプルの背面にマウントされた集光 レンズを通して照射される。円偏光度の測定は、 Figure8 においてλ/4 板の下流にグランレーザープリ ズムを設置し、回転検光子法の要領で行った。今回 の実験で使用する 2 種類の波長のレーザーにおける 偏光度は、405 nm で 99.8%、454 nm で 98.3%であっ た。

スピン偏極度を測定する Mott 検出器は、電子銃と 真空経路で接続されており、途中のステアリングコ イルと静電球形コンデンサーにより電子ビームが移 送される。

Figure 8: Schematic view of pump laser injection system and beam transport line to Mott polarimeter.

3.3 Mott 検出器によるスピン偏極度測定

本実験ではスピン偏極度の測定に、Mott 散乱を用 いた[13]。スピン偏極度測定は100 keV のエネルギー で行った。Mott 散乱は電子が原子核と衝突し散乱す る際、電子の散乱後の軌道にスピンの違いによる非 対称性が生じる。これにより、ターゲットに衝突・ 散乱した後の電子の軌道中に検出器を設置すること で、スピン別に電子のカウント数を測定することが 出来る。

今回、スピン偏極度測定に用いた Mott 検出器の模式図を Figure9 に示す。検出器はターゲットと回路部分で構成されており、回路部の途中まで+85 kV に昇圧されている。ビームは電子銃部分で 15 keV に加速されており、合計 100 keV のエネルギーでターゲットの金箔と散乱する。散乱電子はビーム軸に対して±120°の位置に設置された SSD により検出され、

メインアンプにより増幅された後、光信号に変換さ れてグランドレベルの回路に取り出される。フォト ダイオードにより取り出された信号は、I/V コン バータを介してリニアアンプ・MCA(Multi Channel Analyzer)にて波高情報をもとにエネルギー分解され る[12]。

Figure 9: Schematic view of the data acquisition with the Mott measuring instrument.

Figure 10: The electron energy spectrum measured on MCA.

MCA で測定した電子のエネルギースペクトルを Figure10 に示す。このスペクトルには、弾性散乱し た電子による信号成分と、非弾性散乱や X 線などに よるバックグラウンド成分が混在している。従って、 MCA より得た信号からバックグラウンド成分を差 し引いた成分が、スピン偏極情報を共有した電子の カウント数として用いられ、左右の検出器から得ら れる電子数の非対称性から最終的にスピン偏極度が 算出される。今回の実験では、波長405 nmと454 nm の励起レーザーを用いてそれぞれの時のスピン偏極 度を測定した。

4. 実験結果・考察

4.1 測定結果

2 種類の波長のレーザーを用いて得られたスピン 偏極度の測定結果を Table2 に示す。励起レーザーの 波長が 405nm の時、スピン偏極度は 2.1%、454 nm の時 0.13%であった。一回 Mott 散乱を利用したスピ ン偏極度の系統誤差は 6%程度存在するため、今回 用いた GaN/GaInN 超格子サンプルから得られる電子 ビームは、ほぼ無偏極の状態であったと言える。

Table 2: Spin Pola	rization Every	Wavelength
--------------------	----------------	------------

Incident laser wavelength	Spin polarization
405 nm	2.1%
454 nm	0.13%

PASJ2016 TUP047

4.2 考察

スピン偏極度測定結果の妥当性を検討する為、 GaAs 系電子源におけるスピン偏極度と膜厚の関係 性を再現した計算モデルを用いて、GaN 系電子源の スピン偏極度を見積もった。計算モデルでは励起直 後の電子はスピン偏極度 100%とし、半導体中の拡 散距離に対して指数関数的にスピン偏極度が緩和し ていくモデルである。尚、このモデルには不純物準 位からの電子の励起やバンド構造の乱れなどの影響 は考慮していない。使用した物性値はバルクの hcp-GaN のスピン緩和時間 0.47 ps[7]と、一般的な半導体 の電子の飽和拡散速度1×10⁵ m/s である。計算の結 果、今回用いたサンプルのスピン偏極度は 28.3%と 算出された。

実際のサンプルの物性値は、計算に用いた値より も小さくなると予想される。なぜなら、超格子構造 は結晶構造の界面が多いため、バルク状態よりも電 子が散乱されやすい状態であるので、電子の拡散速 度は飽和速度よりもかなり小さい値になる。また、 電子の拡散速度を1×10⁴ m/sとして計算するとスピ ン偏極度は 2%と算出され、ほぼ無偏極となる。さ らに、hcp-GaNのスピン緩和時間はGaAsよりも3桁 程小さいことから、GaAs 系電子源よりもスピン偏 極度はかなり小さくなるとも予想される。従って、 今回の実験結果は妥当な値が得られたと考えられる。

これまでの実験結果と計算結果の比較から、電子 源に用いる半導体のスピン緩和時間はビームのスピ ン偏極度に大きな影響を与えることが言える。大き なスピン緩和時間が期待できる fcc-GaN では現時点 で電子源サンプルを作ることが困難であるが、将来 的に製膜技術が進歩し、電子源として利用できるよ うになれば、高い量子効率とスピン偏極度を両立さ せたスピン偏極電子源の実現が期待できる。

5. まとめ

本研究では、六方晶系 GaN 超格子サンプルの電子 ビームのスピン偏極度を測定した。Mott 散乱を用い た測定方法により、今回用いたサンプルと励起光の 波長では、その電子ビームはほぼ無偏極であること が確認された。従来用いてきた GaAs よりもスピン 緩和時間が短い hcp-GaN であった為、このような結 果は妥当であると言える。

次世代のスピン偏極電子源の有力候補である fcc-GaN は、その製膜技術が実用レベルに至っておらず、 その実現が待たれる。

謝辞

本研究の一部は、高エネルギー加速器研究機構大学等連携支援事業による支援を受けて行った。

参考文献

[1] X.G. Jin et al., "Effect of crystal quality on performance of

spin-polarized photocathode", Applied Physics Letters 105, 203509 (2014).

- [2] http://www.linearcollider.org/
- [3] T. Nakanishi *et al.*, "Spin polarized electron source technology transferred from HE accelerators to LE electron microscopes", Proceedings of Particle Accelerator Society Meeting 2009, JAEA, Tokai, Naka-gun, Ibaraki, Japan.
- [4] X.G. Jin *et al.*, "High-Performance Spin-Polarized Photocathodes Using a GaAs/GaAsP Strain-Compensated Superlattice", Applied Physics Express 6 (2013) 015801.
- [5] N. Yamamoto *et al.*, "歪み補償超格子構造を用いたスピン偏極電子源開発", Proceedings of Particle Accelerator Society Meeting 2015, WEP042.
- [6] 宮内智寛,名古屋大工学部物理工学科 2015 年学士論文 "NEA-GaAs 型超格子を用いたスピン偏極電子源にお ける電子生成過程の解析".
- [7] A. Tackeuchi *et al.*," Nanosecond excitonic spin relaxation in cubic GaN", Applied Physics Letters 88, 162114 (2006); doi: 10.1063/1.2195779.
- [8] http://www.ioffe.ru/SVA/NSM/Semicond/GaN/
- [9] M. Kimura et al.,"時間分解フォトルミネッセンスによるスピン緩和時間の測定",日本応用磁気学会誌20,253-256 (1996).
- [10] S. Karkare *et al.*, "Monte Cario charge transport and photoemission from negative electron affinity GaAs photocathode", Applied Physics Letters 113,104904 (2013).
- [11] T. Nishitani *et al.*, "Photoemission lifetime of a negative electron affinity gallium nitride photocathode", Journal of Vacuum Science & Technology B 32, 06F901 (2014); doi: 10.1116/1.4901566.
- [12] 山本尚人,名古屋大学大学院理学研究科 2007 年博士論 文 "NEA-GaAs 型超格子薄膜結晶を用いた高輝度・高 スピン偏極度・大電流密度ビームを生成する電子源の 開発".
- [13] T. Nakanishi et al., JJAP 25, 5 (1986) pp.766-767.