PASJ2016 TUP081

J-PARC RCS リングコリメータ故障によるビーム損失局所化への影響

AN INFLUENCE OF RING-COLLIMATOR MALFUNCTION ON BEAM LOSS LOCALIZATION IN THE J-PARC RCS

吉本政弘、竹田修、原田寛之、山本風海、金正倫計 Yoshimoto Masahiro, Osamu Takeda, Hiroyuki Harada, Kazami Yamamoto, Michikazu Kinsho Japan Atomic Energy Agency (JAEA) / J-PARC

Abstract

In order to localize the beam loss in the ring, the J-PARC RCS has the ring collimator systems which consist of one primary collimator (scatter) and five secondary collimators (absorbers). However vacuum leaks occurred at the collimator absorber-5 in April, 2016. Therefore the collimator absorber-5 has been removed and the dummy ducts have been replaced. Detailed distributions of the residual radiations on the vacuum chambers along the ring were measured by the Geiger-Müller counter to investigate an influence on the beam loss localization. In addition, the signals obtained by the new beam loss monitors are related with the residual doses.

1. はじめに

J-PARC 3GeV RCS では世界最高レベルの 1MW 大 強度ビームを実現するために、ビーム損失を局所化 して他機器の放射化を抑制するリングコリメータシ ステムを設置している^[1]。RCS のリングコリメータ システムは散乱体1台と吸収体5台で構成されてお り、これまでのビーム調整の成果と合わせて、コリ メータ部以外に大きな放射化を機器に生じさること なく 500kW ビーム出力までの利用運転の実績を持つ ことが出来た^[2]。しかし、2016年4月にリングコリ メータの吸収体5において駆動部破損に伴う真空 リークが発生し、取り外した後に代替真空単管ダク ト群(代替ダクト)に置き換えての加速器運転を余 儀なくされた。これは RCS におけるビーム損失の局 所化に大きく影響する。そこでこの状況下での運転 再開を判断するために、まず粒子トラッキング計算 を実施し、コリメータ下流部で新たなビーム損失が 発生しても現在の利用運転時におけるビーム強度で は許容可能であることを確認した。次に加速器の立 ち上げ調整時において、リング全周にわたるビーム 損失モニタ(Beam Loss Monitor: BLM)の測定結果から ビーム損失の増加量は許容範囲内であることを確認 し、ビーム利用運転を再開した^[3]。今回のコリメー タ故障事象を受けて、RCS 全周にわたる残留線量の 詳細分布測定を実施することにした。また可能な限 り短期メンテナンスに伴うビーム停止毎に継続的に 測定することで加速器運転状況に伴う残留線量分布 の推移も調査した。この結果から、より詳細なビー ム損失の構造を把握することが出来た。

本論文では、リングコリメータ吸収体5を取り外 したことによるビーム損失局所化への影響を報告す る。また詳細な残留線量分布測定の結果からリング コリメータの調整方法に対する課題についても議論 する。

2. コリメータ故障の概要と運転再開まで の流れ

今回の RCS で発生したコリメータ重故障に関する 詳細は別途報告を行っている^[3]。ここでは概要と再 開までの流れについて簡単にまとめる。

2016 年 4 月 5 日の J-PARC 加速器における短期メ ンテナンス・ビーム停止日に合わせて実施したコリ メータ制御系の動作試験中に、コリメータ・吸収体 5から真空リークが発生した。詳細原因については 調査中ではあるが、これまでの調査結果からは、制 御系不具合によりコリメータ駆動軸系が誤動作をお こし、ベローズもしくはフランジ接合部が破損した 可能性を強く示唆している。今回故障した吸収体5 について予備機が存在しないため、早急な運転再開 を実現するためには、吸収体5を取り外して代替ダ クトでつなぎ合わせることにした。この対策方法に はビームロスの局所化への影響が懸念される。そこ でリングコリメータの散乱体で散乱された粒子につ いて SAD コードを用いた粒子トラッキング計算で追 跡し、吸収体1~4からの漏れ出た後に損失する量 について評価した。結果をまとめると以下のように なる。

- 吸収体5を取り除いた場合、散乱粒子の漏れによるロスポイントはアーク部入口付近に1か所 増える。
- ② 吸収体4を微調すると、吸収体5からの漏れ分は回収できる。
- ③ ただし、これは吸収体1~4の位置調整ができている場合であり、挿入しすぎると散乱体として働くことになり、散乱粒子が漏れ出ることでロスポイントは増大する。

いずれの場合もビーム損失量として大幅に増加する ことはないと判断されたため、運転再開に踏み切る ことにした。但し、今回のコリメータ重故障のきっ かけが制御系の不具合に起因することを考慮し、こ れ以上のトラブル拡大を引き起こさないために、制

[#] gakkai@kasokuki.com

Proceedings of the 13th Annual Meeting of Particle Accelerator Society of Japan August 8-10, 2016, Chiba, Japan

PASJ2016 TUP081

御系改修を実施するまではコリメータの駆動調整は 行わないと決心した。このことは想定以上にコリ メータからの漏れ量を増やしロスポイントを拡大さ せる可能性が否定できない。以上のことから運転中 のビームロスモニタによるロス分布の確認だけでな く、短期メンテナンス・ビーム停止日毎に RCS のリ ング全周にわたる詳細な残留線量の測定を行い、運 転継続の判断を適宜行うこととした。

3. 残留線量の詳細測定

3.1 測定条件

表1は実施した残留線量測定の条件をまとめたも のである。コリメータ・吸収体5を取り除いたこと による影響を調べるために、運転再開直前の残留線 量分布を測定した。吸収体5の撤去作業及び復旧に 伴いRCSのビーム運転が1週間程度停止していたた め、残留線量の絶対値としては大きく減衰している ことには注意が必要である。運転再開後の残留線量 測定はビーム停止後4~6時間後で測定を開始できる ように調整した。線量測定はガイガーミュラー比例 計数管(GM 管:TGS-R74 ALOKA 製)を用いて 行った。測定箇所は主要電磁石の真空ダクト表面で かつ上流及び下流フランジの接合部付近とした。真 空ダクトの上下平面・内外周平面の放射化の違いを 評価するために、GM 管を真空ダクト表面に直接接 触させてフランジ毎に上下面と内外周面の4 点ずつ 測定した。そのため、1 度の測定にかなりの時間が 必要となり、それに合わせて作業者の被ばく線量も かなり高いものとなった。表 1 の最下行は測定者及 び記録者の被ばく線量結果を示している。作業者の 被ばくリスクの低減し且つ残留線量分布を把握する ことが今後の大きな課題となっている。

Table 1: Operational Conditions of the J-PARC RCS for the Residual Dose Measurements

	2016/4/11	2016/4/14	2016/4/20	2016/4/27
運転期間	再開直前	半日運転	1週間運転	2週間運転
運転条件	MLF 利用	MLF 利用	MLF 利用	MLF 利用
	(205kW)	(205kW) NU 利用 (360kW)	(205kW) NU 利用 (385kW)	(207kW) NU 利用 (386kW)
ビーム停 止時刻	4/4 7:00	4/14 7:45	4/20 9:00	4/27 9:00
測定時刻	13:15 ~ 20:31	14:18 ~ 17:13	13:38 ~ 16:13	15:35 ~ 18:27
ビーム停 止後時間	174.3h ~ 181.5h	$6.5h \sim 9.5h$	$4.5h \sim 8h$	$6.5h\sim 10h$
測定時被		0.05mSv/h	0.09mSv/h	0.13mSv/h
ばく量		0.01mSv/h	0.02mSv/h	0.03mSv/h

Figure 1: Residual dose distribution along the ring in the J-PARC 3GeV RCS.

3.2 リング全周の残留線量

Figure 1 は表1に沿って測定した残留線量分布とその推移をまとめたもので、RCSの三回対称性に合わせて 3 段に分けてプロットした。縦軸は測定した真空ダクト表面の内、より特徴的な結果を示した内周

側の残留線量をプロットしている。また横軸はビーム進行方向の距離 s[m]ではなく、マグネット名称としており、注意が必要である。残留線量の詳細分布から特徴的なロスポイントには次の 5 種類に区分することが出来る。

[A] ディスパージョンピーク位置付近でのロスポ イント:

このポイントでのビームロスは、これまでの加 速器運転でも観測・注視している箇所である。外 周側に比べて内周側に大きく出ているのが特徴で、 主にコリメータ・散乱体で散乱されエネルギーロ スした粒子が、吸収体からは漏れ出たが運動量の 違いからディスパージョンピークに到達する直前 でダクトアパーチャによって削られたために生じ たものである。特に第1アーク部は吸収体5を取 り外したことによる影響が強く出ており、アーク 部に入った直後から継続的にビームロスが発生し ており、ディスパージョンピーク直前では大凡 0.5[mSv/h]まで増加している。

[B] 荷電変換フォイル周辺及び下流でのロスポイ ント:

荷電変換フォイル周辺にはこれまで高い残留線 量があり、詳細測定はコリメータ重故障前から継 続して測定している。この残留線量の原因は、荷 電変換フォイルにエネルギー400MeVの負水素イ オンビーム及び陽子ビームを照射する際に核反応 で生じる二次粒子によるものである^[4]。そのため、 この残留線量については吸収体5の取り外し前後 で大きな違いが生じていないことは確認できた。

荷電変換フォイルの下流部には、荷電変換フォ イルによる大角度散乱粒子がリングコリメータに 到達する前にビームロスすることで高い残留線量 が発生している。この課題に対してリングコリ メータ手前に H0 コリメータを設置し、大角度散 乱粒子によるビームロスを局所化させるようにし ている^[5]。しかし、今回リングコリメータ直前の 四極電磁石 QFM0201の入口で1.4[mSv/h]もの高い 残留線量が観測された。H0コリメータも故障した リングコリメータと同じ制御システムを使用して いるため、ビーム運転再開後は制御系の改修が完 了するまでは駆動・調整はさせないこととした。 そのために調整不十分で大きな残留線量が残った と考えられる。

[C] リングコリメータ下流部でのロスポイント: 吸収体5を取り除いたことによりリングコリ メータから下流部に大きな残留分布が見られる。 特に直後の四極電磁石入口(QDX0301上流フラン ジ部)の残留線量は 1.3[mSv/h]まで上昇し残留分 布の形状が変化している。これは吸収体5を遮蔽 体ともに取り外したために、漏れ出た散乱粒子に 加えてリングコリメータ内部で発生した 2 次粒子 (陽子及び中性子)による影響が大きいと考えら れる。その後、アーク部に入ると2次粒子の影響 は徐々に減少し、四極電磁石 QFN0401 で一旦ビー ムロスはほとんどなくなるが、その後ディスパー ジョンピークに向けてまた残留線量が徐々に増加 する。この原因は[A]と同様のエネルギーロスを した散乱粒子によるビームロスによるものである。 なお、吸収体5を取り外した後の代替真空単管ダ

クトに関する放射化と残留線量については別途次 節で議論する。

[D] わずかに放射化しているが、運転再開後は増加していないポイント:

このポイントでは現在のビーム運転において有 意なビームロスは発生していない。以前に発生し たビームロスによる放射化の名残で、残留してい る長寿命核種の影響を見ているものと考えられる。

[E] わずかに放射化しており、運転再開後に増加 しているポイント:

このポイントは元々残留線量が無かったもしく は非常に小さかったところに、今回の吸収体5を 取り外してビーム運転を再開したことで残留線量 が増加した箇所である。つまりコリメータからの 漏れ出た粒子によるビーム損失点を示唆している。 コリメータ制御系改修後にコリメータ吸収体の位 置微調整を行うことで、この点でのビーム損失は 抑制できると考えている。

Figure 2: Schematic view of the dummy ducts for the Ring collimator absorber-5, and residual dose distributions along the dummy ducts.

3.3 代替ダクトの残留線量

取り除いた吸収体5の跡にぴったり当てはまる代 替ダクトは用意していないため、手持ちの形状の異 なる真空ダクト群を組み合わせて代替タクトとして

Proceedings of the 13th Annual Meeting of Particle Accelerator Society of Japan August 8-10, 2016, Chiba, Japan

PASJ2016 TUP081

真空接続を行った。Figure 2 に組み合わせた真空ダ クト群の模式図を示す。またこの代替ダクトの上下 面及び内外周面に沿って測定した残留線量分布も併 せてプロットしている。途中変換ニップル及びベ ローズ付ダクトの 2 か所で、真空パイプ径が小さく なっている。測定した 4 つの残留線量分布すべてに 対してアパーチャの小さくなる 2 地点で残留線量の ピークが見られる。また測定結果は残留線量分布に 偏りがあることが分かる。特に外周側の線量は内周 側に比べておよそ 3 倍程度大きい。この線量分布の 偏りはこれまであまり認識しておらず、今回から実 施した残留線量の詳細分布測定によって明らかと なった。

Figure 3: Schematic view of the Ring collimator absorber-4&5, and measurement residual dose on the absorber blocks.

4. コリメータ調整方法に対する課題

4.1 コリメータ本体の残留線量

今回の吸収体5を取り除いたことにより、ビーム 運転後のコリメータ内部の放射化の状況を初めて確 認することが出来た。フランジ開放部から吸収体4 及び5のコリメータブロックの表面線量について遠 隔での測定が可能なテレテクタを用いて測定した結 果をまとめたものが Fig. 3 である。測定はビーム停 止後 4.5 日後に実施しており、吸収体4では内周側 に 125mSv/h と最も高く、吸収体5 では外周側に 40mSv/h と最も高い残留線量が計測された。このよ うな偏りの原因はコリメータ調整手法によるものと 考えられる。コリメータの調整は、各吸収体の遮蔽 体外に設置している BLM を見ながら散乱粒子の吸 収量を、RCS 全周にわたる BLM を見ながら散乱粒 子の漏れ量を評価して、最適位置を探索している。 しかし、RCS 全周の BLM は主にステアリングマグ ネットの架台の下に設置してあり[4]、各吸収体の BLM は全て通路側に支持治具に取り付けて設置して いる^[5]。つまり BLM は各エリアに1台しかないため、 上下側や内外周側のビーム損失の差異を正確に知る ことが出来ない。結果として、水平方向及び垂直方 向の位相空間上でのビームのコリメーションがアン

バランスになり、残留線量の偏りとなって現れる。 このことは Fig. 2 で見られる残留線量分布の偏りの 原因にもなっている。

Figure 4: Excitation curve of the integrated magnetic field as a function of the coil current.

Table 2: Specifications of the Plastic Scintillator

タイプ	プラスチックシンチレータ
材質	EJ212
サイズ	$20 \times 20 \times 50$
仕様	反射材・遮光処理

Table 3: Specifications of the PMT

メーカー	浜松ホトニクス
型式	H11934-100-10MD
内臓 PMT	R11265U-100
光電面種類	スーパーバイアルカリ
窓材質	硼硅酸ガラス
ダイノード	メタルチャンネル 12段
上昇時間(Tr)	1.3ns
走行時間(T.T.)	5.8ns

4.2 ビーム損失の偏りを計測するための BLM 開発

一般に BLM 単体ではビームの損失点を特定する ことは困難である。大強度加速器における重要な課 題の一つがビーム損失の低減であり、RCS において もこれまではどこでビームを損失してももれなく検 出することを優先していた。しかし、1MW の大強 度運転を控えより精密なビーム調整が必要となり、 そのためにもビームの損失点を特定しその損失量を 評価する必要性が高まっている。今回から実施した GM 管を用いた残留線量の詳細分布測定によりビー ム損失点は明らかになった。そこで既に明らかと なったビーム損失点に追加し局所的なビーム損失を 検出する BLM を開発すれば、より精密なビーム調 整が実現できると期待できる。

Figure 4 の写真右は試作した局所ビーム損失を検

出するための新型 BLM である。この BLM はシンチ レーション光検出タイプのため、局所ビーム損失の みを検出することは難しい。しかしシンチレータ部 の容量を小さくし損失点に直接取り付けることで、 局所ビーム損失に大きな感度を持たせることが可能 となり、GM 管測定と同等なビーム損失の偏りを検 出することが出来る。表2及び3に新型BLMのシン チレータ及び光電子増倍管(PHOTOMULTIPLIER TUBE: PMT)の主な仕様をまとめる。PMT は小型で 感度が高くかつ時間応答の早いものを選定した。こ の新型BLMを2台準備し、代替ダクトに設置した。 取り合いの関係上、設置場所は残留線量の2番目に 高いピーク点である変換ニップルとし、内周側及び 外周側に直接取り付けた。Figure 5 はビーム運転時 の典型的な BLM 出力波形を示したものである。 PMT への印加電圧は-400V で、途中プリアンプ等を 通さずに終端抵抗 50Ωで直接オシロスコープに接続 した。(この信号収集モードをビーム損失信号の波 形収集モードと定義する。) RCS に 0.5msec かけて 多重入射されたビームのエミッタンスは空間電荷効 果により広がるが、その後加速とともに縮小する。 そのためコリメータ部のビーム損失は入射後 8msec 程度までで減衰する。Figure 5 の赤色プロットが内 周側 BLM 信号で青色プロットが外周側 BLM 信号で ある。外周側に大きく偏っており、積分すると 2.48 倍となっており残留線量の比率 2.44 とほぼ一致して いることが分かった。これはビーム損失と残留線量 との相関を示している。

またビーム運転停止後に放射化した代替ダクト表 面からのy線について新型 BLM を用いて検出する ことを試みた。PMT への印加電圧を最大定格の-900V まで上げて、終端抵抗を 1MΩに切り替えて 2 秒間のデータを平均処理して長時間データ収集を 行った。(この信号収集モードを残留核種からのガ ンマ線検出モードと定義する。) Figure 6 が測定結 果を示したもので、緑色ドットが内周側、オレンジ 色ドットが外周側を示している。途中データ収集に 失敗している期間もあるが、放射化した代替ダクト の減衰曲線を得ることが出来た。また定期的に GM 管を用いて残留線量を測定した結果も併せてプロッ トして比較した。これを見ると残留線量と減衰曲線 とはよく一致していることが分かる。この結果から 新型 BLM を用いたy線計測の校正データを作るこ とが出来、トンネル内での GM 管を用いた線量測定 を行わなくても残留分布とその時間変化を測定でき ることが分かった。この方法をリング全周にわたっ て展開することで、作業者の被ばくリスクの低減し 且つ残留線量分布を把握するという課題に対する解 答を得ることが出来る。

4.3 コリメータの微細調整

新型 BLM を真空ダクトの上下側、内外周側の表面に設置することで、残留線量の偏りの原因となるビーム損失のアンバランスを測定できることが分かった。この結果から、新型 BLM をコリメータ本体の内部やコリメータからの漏れ粒子によるビーム損失点に設置することで、コリメータの微細調整が

可能となると期待できる。2016 年夏期メンテナンス 時に駆動軸制御系の改修を行うので、秋からのビー ム調整時に新型 BLM を用いたコリメータ位置の微 細調整を試みる。

5. まとめ

RCS におけるコリメータ重故障の発生に伴い、リ ング全周にわたる残留線量分布の詳細測定を継続し て実施している。これによりビーム損失の詳細につ いて把握することができ、またコリメータから漏れ 出た散乱粒子によるビーム損失点を特定することが 出来た。新型 BLM をビーム損失点のダクト表面の 内外周側2か所に取り付けた。波形収集モードに設 定することで、残留線量分布の偏りをビーム損失量 と関連付けて計測することが出来た。y線検出モー ドに設定し、GM 管測定によるデータ校正を行うこ とで、残留線量とその減衰曲線を得ることが出来た。 また、この新型 BLM を用いることで、コリメータ の微細調整が可能となることを期待しており、秋以 降のビーム調整時に試みる。

Figure 5: Typical measurement signals of the new-BLMs on the dummy ducts.

Figure 6: Relation between decay curves measured by the new BLMs and measurement residual radiations on the same places obtained by the GM counter.

参考文献

- [1] K. Yamamoto, PRST-AB 11, 123501 (2008).
- [2] H. Hotchi et al., in Proc. of PASJ2015, p.103
- [3] K. Yamamoto et al., In these proceedings: MOP007.
- [4] K. Yamamoto et al., in Proc. of PASJ2013, p.1060.
- [5] K. Yamamoto, in Proc. of HB2008, USA p.304.