PASJ2019 FRPI032

SuperKEKB ダンピングリングの放射光モニターを使ったビーム計測

BEAM MEASUREMENT OF SuperKEKB DAMPING RING USING SR MONITOR

池田仁美^{#, A,B)}, 杉本 寛^{A,B)}, 飛山真理^{A,B)}, 福間均^{A)}, フラナガンジョン^{A,B)}

Hitomi Ikeda ^{#, A, B)}, Hiroshi Sugimoto ^{A, B)}, Makoto Tobiyama ^{A, B)}, Hitoshi Fukuma ^{A)}, J.W.Flanagan ^{A, B)}

^{A)} High Energy Accelerator Research Organization (KEK)

^{B)} The Graduate University for Advanced Science (SOKENDAI)

Abstract

Four positron bunches are accumulated in SuperKEKB damping ring (DR) at the same time up to 4nC. A synchrotron radiation monitor (SRM) was built to measure the beam size. The emission light comes from bending magnet(ρ =3.14m) just after a fork to the beam extraction line of DR. The light propagates the pit under the floor in the tunnel to SRM monitor room. We measured a damping time of the injected bunch using a gated camera and a streak camera.

1. はじめに

SuperKEKB は、7 GeV の電子リング(HER)と 4GeV の陽電子リング(LER)から成る衝突型加速器で、KEKB の 40 倍のルミノシティ 8x10³⁵cm⁻²s⁻¹を目指して建設され た。2016年2月から6月にかけて主リングの試験運転 である Phase-I 運転を行った後[1]、Belle-II 検出器の据 え付け及び入射部の改造を行い、2018年3 月から7 月 まで Phase-II 運転を行った[2]。デザインルミノシティを達 成するためには、衝突点でのビームサイズを nm レベル まで絞ることが必要であるが、LER に関しては、陽電子 のエミッタンスを小さくするためのダンピングリング(DR) を建設し、Phase-II 運転に先立って 2018 年 2 月初旬に 調整を開始した[3,4]。DR の主なパラメータは Table 1 の 通りである。2019年3月11日から7月1日までの phase III 運転では、本格的な物理データ収集を始め、リング内 の蓄積ビームを増やし、ビームチューニングによるビーム サイズを絞ることによって、ルミノシティを向上させることを 目指した[5]。

Table 1: Damping Ring Parameters

Parameter		unit
Energy	1.1	GeV
No. of bunch trains/ bunches per train	2/2	
Circumference	135.5	m
Maximum stored current	12	mA
Damping time $(h/v/z)$	11.5/11.7/5.9	ms
Emittance(h/v)	29.2/1.5	nm
Energy spread	0.055	%
Bunch length	7.85	mm
Mom. compaction factor	0.01	
Cavity voltage	1.0	MV
RF frequency	509	MHz

Phase-III 運転中の DR は大きな問題なく稼働しており、

hitomi.ikeda@kek.jp

ダンピングタイム等のパラメータ測定のために放射光モニターを使ったスタディを行ったので、その結果を報告する。

Table 2: DR SRM Parameters

Parameter		Unit
SR Opening Angle	3.47	mrad
Chamber Vertical Aperture	13.6	mrad
Chamber Horizontal Aperture	38.64	mrad
Bending Radius	3.15	m
Bending Angle	0.152	rad
Bending Length	0.4794	m
SR Power	12	W
Forward Spectral Angular Density of Flux	8.37×10 ²	photons/mr ² /0.1% band width/nC

2. ダンピングリングの放射光モニター

DR 放射光モニター(SRM)のパラメータを Table 2 に まとめた。測定には、DR から入射器への出射路(RTL) が枝分かれした直後にある曲げ半径 3.14 m の偏向電磁 石からの光を使用する[6]。磁石から約 0.5 m 下流のベリ リウム鏡で光を取り出し、Fig. 1 に示す様に、トンネル床 下のピットを通ってトンネルに隣接する SRM 室まで伝送 する。ベリリウム鏡は KEKB メインリングで使用していたも のを再利用した水冷式だが、鏡に当たる放射光パワー は現時点の DR の最大電流値に対して 3.0W と見積もら れ、これは KEKB LER の 1/10 に当たり、十分低いため、 熱変形等を気にする必要はない。

光転送路にはアルミコーティング鏡を4枚使用し、それぞれをパルスモータでリモートコントロールすることにより、光軸の調整を行う。あらかじめ光路設置時にレーザーを使った光軸調整を行っていたため、ビームが出てからの調整は短時間で終了した。SRM 室内に入ってか

Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan July 31 - August 3, 2019, Kyoto, Japan

PASJ2019 FRPI032

らの光は、平面鏡で2つのラインに分割し、横方向の ビームサイズを測定するゲートカメラと時間方向の分布を 測定するストリークカメラの測定が同時に出来る様にした。 Phase-II 運転時には屈折光学系とバンドパスフィルター を使った入射光学系を使っていたが、光量が少なく単バ ンチ毎のサイズ測定が難しかったため、両ラインとも Phase-III 開始時に反射光学系に組み替えて、すべての 波長領域の入射光を測定に使用できるようにした。その 結果、通常運転電流(2.5mA/bunch)での単バンチの測 定が可能になった。

Figure 1: Layout of the DR SRM line.

3. サイズ較正

カメラの像を実際のビームサイズに変換するため、以 下の方法でサイズ較正を行った。

ストリークカメラについては時間軸の較正のため、周波 数シンセサイザーと半導体レーザーパルス光源 (508.88MHz、パルス幅約 50ps)を組み合わせて等間隔 時間パルスを発生させ、カメラに入力した。時間軸は 4 段階に切り替えられるので、それぞれのレンジで入力パ ルスを変えて測定した結果が Table 3 である。実際のバ ンチ長測定には主にタイムレンジ2を使用しているので、 理論値と実測値の差は-0.6%であり、7mm のバンチ長に 対して 0.042mm となり、十分小さい。

Table 3: Streak Camera Calibration Result

Time	Theoretical	Measured	difference
range	value	value	
4	1122.94	1138	1.3%
3	802.1	800.7	-0.2%
2	398	395.7	-0.6%
1	105.5	109.9	4.0%

ゲートカメラの較正には実ビームを用いた。放射光の 発光点にローカルバンプ(横方向:-3.5mm~2mm,縦方 向:-3mm~3.5mm)を立てて、ゲートカメラ画像上での ビーム位置の変化を測定し、ピクセル数からビームサイ ズ[mm]への変換係数を導出する。Figure 2 が立てたロー カルバンプの一例で、緑の線がバンプ軌道である。 Figure 3 に横(h)方向、縦(v)方向それぞれの較正の結 果を示す。

Figure 3: Calibration of beam size measurement by gated camera for (a) horizontal and (b) vertical direction.

4. ビームサイズ測定

上流の入射器からのシミュレーション結果によると、 DR へ入射直後のバンチ形状は長手(z)方向に偏りを 持っているが、DR を周回するにつれてダンピングされて、 Gaussian に近づく[7]。ストリークカメラで測定すると、Fig. 4 の様に入射直後には時間軸方向にも横方向にも歪ん でいたバンチが徐々にダンプされて、20 ms 後には Gaussian 形状に近い形になっていることがわかる。ゲート カメラでの測定でも、入射直後は大きく広がっているビー ムが、最初の数10ターンは収縮を繰り返した後に、縦(v) 方向、横(h)方向とも縮んで行く様子が計測された。スト リークカメラ及びゲートカメラを使って DR 入射後のビー ムサイズの変位を測定した結果が Fig. 5 である。測定結 果を Fit した結果、hvz 方向のダンピングタイムはそれぞ れ 11.5ms±0.29ms/9.9ms±0.93ms/5.1ms±1.17ms とな り、デザインオプティクスから計算した 値 11.5ms/11.7ms/5.9ms と近い値を示した。十分ダンプした 後のバンチ長は、7.15mm となり、エラーバーの範囲内で 計算値と一致する。

5. まとめ

SuperKEKB LER の陽電子ビームのエミッタンスを小さ くするためのダンピングリングは、Phase-II 運転前に立ち 上げられ、Phase-III 運転まで大きな問題なく稼働してい る。今回、放射光モニターを使って測定したところ、横方 向、バンチ長方向とも予想ダンピングタイムとよく合った 結果が得られた。また、バンチ長の絶対値も計算値と あっている。

Figure 4: Longitudinal beam distribution that measured by streak camera (a) just after injection and (b) 20 ms after injection.

Figure 5: Measured beam size of (a) longitudinal, (b) horizontal and (c) vertical after injection.

参考文献

- Y. Funakoshi, "BEAM COMMISSIONING OF SuperKEKB", Proceedings of IPAC2016, Busan, Korea TUOBA01 (2016).
- [2] Y. Ohnishi et al., "SuperKEKB フェーズ 2 におけるコミッショニングの成果",第 15 回日本加速器学会,新潟県,WEOLP01 (2018).
- [3] M. Kikuchi et al., "DESIGN OF POSITRON DAMPING

PASJ2019 FRPI032

RING FOR SUPER-KEKB", Proceedings of IPAC'10, Kyoto, Japan, TUPEB054 (2010).

- [4] N. Iida *et al.*, "BEAM DYNAMICS IN POSITRTON INJECTOR SYSTEMS FOR THE NEXT GENERATION B-FACTORIES", Proceedings of IPAC'11, San Sebastian, Spain, THYA01 (2011).
- [5] Y. Ohnishi et al., "SuperKEKB フェーズ 3 コミッショニン グ",第16回日本加速器学会,京都府,FSPH008 (2019).
- [6] H. Ikeda et al., "SuperKEKB ダンピングリング放射光モニ ター", 第8回日本加速器学会, つくば, MOPS069 (2011).
- [7] N. lida *et al.*, "SuperKEKB の陽電子ダンピングリングの入 出射路コミッショニング",第 15 回日本加速器学会,新潟県, THOM04 (2018).