PASJ2019 THOH07

g−2/EDM 精密計測用ミューオン蓄積超電導磁石の磁場調整方針 MAGNETIC FIELD SHIMMING STRATEGY OF MUON STORAGE MAGNET FOR g-2/EDM PRECISION MEASUREMENT

阿部充志^{A)}, 萩津透^{A)}, 齊藤直人^{A)}, 佐々木憲一^{A)}, 三部勉^{A)}, 中山久義^{A)} 飯沼裕美^{B)}, 村田幸弘^{C)}, 古閑康則^{C)}

Mitsushi Abe^{A)#}, Toru Ogitsu^{A)}, Naohito Saito^{A)}, Ken-ichi Sasaki^{A)}, Tsutomu Mibe^{A)}, Hisayoshi Nakayama^{A)}

Hiromi Iinuma^{B)}, Yukihiro Murata^{C)}, Yasunori Koga^{C)}

^{A)} KEK, ^{B)} Ibaraki Univ., ^{C)} Hitachi, Ltd.

Abstract

Experiments of *g*-2/EDM precise measurements need very homogeneous magnetic field at the cylindrical fiducial volume with 3cm-radial width, 10cm-vertical (axial) height and 66.6 cm diameter. The homogeneity should be less than 0.2 ppm peak-to-peak, which is roughly 1/10 of MRI homogeneities. We have done a magnetic field design with 0.13 ppm homogeneity, and this presentation discusses about the shimming operations. We are preparing two sets of passive shimming tools (iron pieces) and two sets of active shimming tools (shim-coil arrays). The passive shimming operation provides precise magnetic field shimming though two steps, which are coarse shimming operation with large volume (with de-magnetization) of iron pieces and fine shimming operation with small volume (less than 100 cc and keeping magnetization) iron pieces. The operation compensates initial error fields after the installation and just before the experiment start. The error fields come from some assembly errors, environmental magnetic fields and some others. The shim-coil arrays are for axial fields and transverse fields, with rotational distributions. They are planned to be used for error field active compensation even during experiment.

1. はじめに

大強度陽子加速器(J-PARC)に配置されている、物 質・生命科学実験施設(MLF)の大強度ミューオン(muon) ビームラインの豊富な muon 源からは、十分なビーム強 度を保ちつつ、エミッタンスが非常に小さい超冷ビーム の実用化研究が進んでいる。これを利用して、高エネル ギー加速器研究機構(KEK)を中心に、muon 異常磁気 モーメント(g-2)と電気双極子モーメント(EDM)の超精密 測定を行う実験(以下では g-2/EDM 実験)準備を進めて いる[1-4]。この実験にはミューオンを蓄積・周回させる領 域に非常に一様(均一)な磁場が必要である[4, 5]。

このような均一磁場を持つ磁石、例えば MRI 用磁石、 は、製作・設置・励磁後、直ぐに均一磁場が得られると言 うわけではない。正確な起磁力配置を設計しても、製作 図面化時の丸め誤差、製作・組み立て誤差による誤差 磁場や磁石外部(例えば建屋鉄筋など)からの環境誤差 磁場があり、これを補正(シミング)する必要がある。つま り、最終的な製作工程の一部として、現実の磁場分布を、 設計磁場分布に詳細調整(シミング)する必要がある。

ミューオンの g-2/EDM 実験に用いる磁石には、ミュー オンを周回・蓄積するシリンダー状の領域(断面 3 cm 幅、 10 cm 高で直径 66.6 cm)に、高磁場(3.0 T)で均一磁場 (磁場振幅±0.1 ppm、均一度 0.2 ppm)を必要とする。 MRI 磁石の場合に比べ約一桁良い均一度である。ここ で、均一度とは、利用する領域の磁場振幅を平均磁場 で割った値であり、peak-to-peak 値である。この均一度を 実現するためにシミング(磁場調整)の方針を、磁石設計、 受動的シミング(鉄片利用)、能動シミング(シムコイル群)、 磁石設計では 0.13 ppm の実力をもつ起磁力配置とした[4]。製作・設置後に予想される誤差磁場に対しては、 主に 2 段階(粗、詳細)に分けた受動シミングを利用する 計画である。これは、MRI 用磁石で実用化している方法 の応用である。これで目標とする均一度は実現出来ると 予想するが、実験開始後に混入する誤差磁場と、軸に 直交する誤差磁場成分に対して2種類のシムコイルを用 意し、実験開始後でも能動的に補正する方針である。こ れらのシミングについて計画を以下で議論する。

2. シミング機器構成

g-2/EDM 詳細計測を行える非常に均一な磁場を実現 するには、(1)起磁力配置の設計、(2)組み立て、設置、 励磁後に計測される誤差磁場の補正(シミング)、の両方 から検討しておくことが必要である。既に、前者では基本

Figure 1: Shimming procedure to obtain homogeneous magnetic field.

残差磁場、の観点から検討している。

[#] abemk@post.kek.jp

Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan July 31 - August 3, 2019, Kyoto, Japan

PASJ2019 THOH07

	Shimming Tools	Capacities (actual)	Roles and usage
Passive tools (magnetized iron pieces)	Coarse shimming shim-trays	$> 4.95 \times 10^4 \mathrm{cc}$ (< 6000 cc)	Rough shimming (shimming for high ordered eigenmodes) using large volumes of iron pieces with magnet current ramp-down, and with iron-yoke ceiling removed and reassemble.
	Fine shimming shim-trays	< 3494 cc (< 100 cc)	Fine shimming (shimming for low ordered eigenmodes) with magnetic field on and without iron-yoke ceiling removed. Fe volume in a shim-pocket should be less than 1 cc.
Active tools (Shim-coils	<i>B</i> z type shim-coils 6 coils in longitudinal array	3 Gauss <i>B</i> _Z (1.0 kA)	In rotational direction, uniform, $\cos\Theta$ and $\cos2\Theta$ like distributions can be corrected.
airaysj	$B_{\rm R}$ type shim-coils 6 coils in longitudinal array	6 Gauss <i>B</i> _R (1.0 kA)	In rotational direction, uniform, $\cos\Theta$ and $\cos2\Theta$ like distributions can be corrected.

Table 1: Tools of Precise Magnetic Field Shimming for g-2/EDM Magne

的な起磁力配置を、MRI 用磁石の設計で開発した特異 値分解応用の磁場設計を応用して決めており、 0.13 ppm の均一度を実現できる起磁力配置としている [5]。後者については、MRI 磁石でのシミングの考え方、 特に参考文献[6]の特異値分解を利用した考え方を応用 する計画である。基本的には Fig. 1 の手順で行うが、本 発表では鉄片配置用構造とシムコイルを具体的に述べ る。

Figure 2(a): Meshes of iron placement pockets and Magnetic field measurement points.

Figure 2(b): Two types of shim-coils. Left: B_Z type shim-coil array, Right: B_R type shim-coil array.

2.1 シミング磁場の発生源

誤差磁場を補正するシミング磁場の発生源(以下シミングツールとする)として、MRI 用磁石と同様に2 種類を 用意する。一つは受動的(passive)ツールで、他は能動 的(active)ツールである。そして、今回はそれぞれに2つ の機能の異なったツールを用意する。これらについて、 Table 1 に説明し、配置位置を Fig. 2 に示す。

受動的(passive)ツール{Fig. 2(a)}の磁場発生源は強 磁場(3.0 T)中で磁化した純鉄片(以下単に鉄片)である。 鉄片は磁気飽和して、1 cc 当たり、1.711 Am²の磁気 モーメントを持つ。この磁気モーメントが作る磁場で、誤 差磁場を補正するのが受動的シミングである。これには、 Table 1 上部のように 2 種類有る。 Coarse と fine の 2 種 類があるが、共に幾何学的配置は Fig. 2 と同様であるが、 鉄量が fine では小さい。前者では一個のシムポケットに 30 cc 程度入れることが出来るが、fine では 1 cc 以下の 鉄量とする。Coarse は鉄量を多く使う。そのため、シミン グ作業ではシムトレイを取り出す時の磁力を避けるため に、消磁を行う。その上で、鉄 yokeの天井の一部を剥が して、作業を実行する。そのため、鉄 yoke 配置の再現性 に難点がある。一方、fine では、coarse でおおよそのシミ ングを行っているので、少量の鉄量で、消磁せずに最終 的に目標の均一度を目指す。fine 用のシムトレイでも出 し入れは必要であるが、小さい穴(直径 38 mm)を常時開 けておき、fine シミング中鉄 yoke 操作は無い。 Coarse か ら fine シミングへの移行は、シミング計算により各シムポ ケットの鉄量が1cc以下となる時点で移行する。これは、 シムトレイを抜き出すときに過大な磁力が加わらない (20 kg 以下)ことを条件と考えている。

もう一つの補正磁場発生源はシムコイルアレイ {Fig. 2(b)}である。各シムコイルには電源が接続され、電源電流でその補正磁場強度を調整する。最大 1.0 kAT である。シムコイルは磁場分布調整の自由度は少ない。 鉄片配置 Pocket が coarse, fine 共に 400 個存在するの に対して、シムコイルは B_R タイプ(軸に直交成分磁場用)、 B_Z タイプ(軸方向成分用)共に 6 個である。それぞれ、周 回方向の B_R および B_Z 磁場分布を 6 個のシムコイルで 調整する。受動シミングのような細かい磁場分布の調整 は出来ないが、実験開始後に予想される誤差磁場、たと えば磁場減衰や磁石近傍の機器(内部に鉄片)配置の 変更による誤差磁場、を補正するために利用できると考 えている。

2.2 磁場計測

磁場の計測には nmr センサを使い、絶対値 |B|が計 測される.この実験に用いる磁場は、ほぼ軸方向に向い ており、|B| は、ほぼ、Bz (軸方向成分)に等しい.一方、 次節のシミング計算(計測磁場から磁場分布を補正する 磁気モーメント配置を算出)では、線形計算を扱うために、 |B|ではなく Bz を変数とする。しかし、両者の違いは均一 磁場領域では極めて小さい。つまり、

(1) $|B| = \sqrt{B_x^2 + B_y^2 + B_z^2}$ はほぼ 3.0 T 一様

(2) 軸に直交する磁場成分(*B_x*, *B_y*)は最大でも数ガウ スである(例えば7ガウスとすると)、

(3) 差異(|B|-Bz)/|Bz|は 0.03 ppm 以下 (<0.09 μT) である。このため、均一度 0.2 ppm (±0.1 ppm peak to peak)以下を目指している場合でも、この両者の差異は 小さく、無視してもシミングは実行出来る。軸に直交した 磁場成分(直交磁場成分:B_X, B_Y)が計測磁場|B|に与え る影響は 0.1 μT 以下である。

計測点数は未定であるが、一つの周回方向角度断面 で 30 点以上であり、周回方向には 10 度毎以下の間隔 で磁場計測点を配置する。つまり、1000 程度以上の計 測点で磁場分布を把握して精度良いシミングを行う。

2.3 シミング計算

シミング計算では、計測磁場を入力とし、磁場分布を 補正するために必要な磁気モーメント配置(受動シミン グ)や電流値配分(シムコイル)を算出する。この計算には、 特異値分解を用いた計算法を用いる。詳しい内容は参 考文献[6]にある。ここでは概略を述べる。

受動的シミングで用いる鉄片は、3.0 T 磁場の中で磁 気飽和して、1 cc 当たり1.711 Am²の磁気モーメントを持 ち、その鉄片の量・配置で磁場分布を補正する。つまり、 誤差磁場

$$\boldsymbol{B}^{\text{ER}} = \boldsymbol{B}^0 - \boldsymbol{B}^{\text{MS}}$$
(1)

を補正する磁気モーメント分布 M を、

$$\boldsymbol{B}^{\text{ER}} \doteq \boldsymbol{B}^{\text{M}} = \boldsymbol{A}\boldsymbol{M} \tag{2}$$

を逆問題として解く。このとき、参考文献では打ち切り特 異値分解を用いている。この手法では、固有モード数を 調整すれば、残差磁場 **B**^{RE}の大きさを調整でき、目標の 均一度 0.2 ppm も、起磁力配置設計の均一度範囲であ り、可能である。行列 **A** の要素 A_{ii} は

$$A_{ij} = (10^{-7}) \{ 3(\boldsymbol{m}_{j} \cdot \boldsymbol{r}_{ij}) Z_{ij} / r_{ij}^{2} - m_{Zj} \} / r_{ij}^{3},$$
(3)

であり、*j*番目位置の磁気モーメント*m*_jの単位強度 (1.0 Am²)の軸方向成分*m*_Zが*i*番目 MFEP に作る磁場 の軸方向成分強度である。ここで、*r*_{ij}は磁気モーメントから磁場評価点へのベクトルである。シムコイルの場合に は、コイルを直線電流要素に分割し、それぞれからの寄 与をビオサバール式で計算・加算して Aを算出する。 行列 A に SVD を適用すると

Α

$$\mathbf{A} = \Sigma \, \boldsymbol{u}_{i} \lambda_{i} \boldsymbol{v}_{i}^{t}, \tag{4}$$

であり、磁場分布を表す基底 u_i と、これに一対一に対応した磁気モーメント配置の基底 v_i および相互の換算係数(T/A)と考えることのできる特異値 λ_i の組み合わせを、固有モード番号 i について加算した式で表現できる。通常、特異値 λ_i の大きさの順に固有モードの番号 i を付ける。これを用いて $A^* = (A^tA)^{-1}A^t$ を求めると、

$$\mathbf{A}^{*} = (\mathbf{A}^{\mathsf{t}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{t}} = \Sigma \mathbf{v}_{\mathsf{i}}\mathbf{u}_{\mathsf{i}}^{\mathsf{t}}/\lambda_{\mathsf{i}}, \qquad (5)$$

である。つまり、SVDを用いることで容易に一般逆行列を 求めることができる。この結果、Mを、

$$\boldsymbol{M} = \Sigma \left(\boldsymbol{u}_{i}^{t} \boldsymbol{B}^{TG} \right) \boldsymbol{v}_{i} / \lambda_{i}$$
(6)

で求め、逆問題を解く。加算は、固有モード番号 i について行い、必要な磁場精度が確保できる固有モード番号 M_D で加算を打ち切り(Truncated)、低次(大きな λ)の SVD 固有モードのみ加算に加える。全ての固有モードを加算すると通常の最小二乗法である。この場合、高次(小さな λ)の固有モードを含めて加算するため、分母に小さな λ を持つ項の加算で、解が不安定となり、過大な鉄量を求めることにつながる。TSVD 正則化は、低次の固有モードを加算し、発生する磁場は些細として高次成分を無視して、妥当な量で磁場を近似的に補正する。

2.4 Bz磁場シミング後の残差磁場

シミング作業を実行後でも残る磁場がある。それらは、

- (1) 磁場設計で許容した磁場分布
- (2) 磁石軸に直交した磁場成分

である。シミングは磁場を調整するが、設計時に計画した磁場以上に良好な磁場分布を得ることは出来ない[6]。 つまり、大きな電流(1 MA 規模のコイルブロック)で作られている磁場を修正するには、同規模以上の電流に相当する電流または磁性体が必要であり、事実上不可能である。従って、シミングした後でも参考文献[5]の設計磁場の均一度 0.13 ppm 程度の残差磁場は残る。しかし、目標の 0.2 ppm 以下と磁場設計されているので、この残差磁場は問題ではない。

一方、(2)の直交磁場成分は、2.1 節で議論したように、 計測が困難であるため、またシミング計算にも含まれな いため、残存する。このような直交磁場を X-Y 面上の磁 力線として代表例の3 種類を Fig. 3 に示した。全体を覆 う鉄 yoke 位置(半径 1.45 m)に軸方向無限長の電流を多 数配置し、電流からミューオン蓄積領域への磁場応答行 列を特異値分解して得られた固有モードとして磁場分布

Figure 3: Typical transverse field which can remain even after well shimmed magnetic field at fiducial region.

PASJ2019 THOH07

を示している。2つの円の間がミューオン蓄積領域である。 磁力線と磁場ベクトルを示した。X-Y,(Z=0)面上で、 MODE1 は磁力線が通り抜ける磁場であり、MODE3, MODE5 はそれぞれ、四重極、六重極磁場である。それ ぞれ周回方向に回転した固有モードも存在するが、図で は省略した。これらの磁場は、軸方向成分 B_Z とは無関係 に存在でき、現在考えている計測センサでは検出が難し い。直行成分の磁場について、検出方法が実用化され た場合には、補正を行えるように B_R タイプのシムコイルを 用意している。補正できる磁場は Fig. 3 の四重極成分以 下の低次であるが、実体系では、六重極成分以上の高 次成分は、低次と比べて極めて小さいので、無視できる と考えている。

Figure 3 には半径方向を向いた磁場 B_R が周回方向一様な成分は存在しない。これは、Maxwell 方程式 div B = 0から電流の無いビーム蓄積領域では、

$$\frac{\partial B_Z}{\partial Z} = -\left(\frac{\partial B_X}{\partial X} + \frac{\partial B_Y}{\partial Y}\right)$$

$$= \frac{1}{R} \frac{\partial}{\partial R} (RB_R) \quad (周回方向に一様の場合)$$
(7),

であり、軸方向一様なら(シミングされた場合も) $\frac{\partial B_Z}{\partial Z} = 0$ で

あり、
$$\frac{1}{R}\frac{\partial}{\partial R}(RB_R)$$
も、シミングにより抑制できる。しかし、
 $\left(\frac{\partial B_X}{\partial X} + \frac{\partial B_Y}{\partial Y}\right) = 0$
(8)

はシミングの後でも残る。これが、Fig. 3 の磁場である。この基本的な理由は、計測の 2.2 節で議論したように、 B_X , B_Y の検出が難しいためであり、今後、この磁場成分の検出法とg-2/EDM の計測誤差に与える影響を議論して行く必要がある。

Figure 4: Simulated error field, which is generated by tilted iron-yoke as right figure. Left two figures plots contours of B_Z (left) and B_R (right) on R=0.333 m cylindrical surface.

3. 均一度実現性の検討

以上のシミングツールと計算手法でミューオン蓄積領 域の磁場をシミングするが、ここでは本シミング方法が機 能すること、および、どの様な磁場が残るかについて検 討する。静磁場としては、3.0T一様な磁場と、傾斜磁場 コイルが存在する。そこで、3.0Tの磁場に誤差磁場を想 定してシミング手法が機能することを確認する。また、 ビーム蓄積領域には±1.0 ガウス程度の弱集束磁場を加 える時に、シミングが必要であるか?を検討する。

3.1 3.0 T 一様磁場のシミング

実際に目標の均一度をもつ磁場分布が実現できることを確認するため、コイル位置の組み立て誤差、周囲での鉄配置(車など)の影響、ビームラインの磁石、それに鉄ヨーク配置誤差を仮定して、誤差磁場を算出し、シミングをシミュレートした。実際に発生しそうな誤差磁場で大きなものは、磁石自身の組み立て誤差である。コイルブロック(CB)の0.5 mmの変位、±0.5 mmの傾き、それに鉄yokeの1 mmの上下移動や軸変位、それに0.05 度の傾きに対して検討し、これらに対して、3000 cc以下の鉄量でシミング出来る事を確認した。慎重な検討が必要な誤差は、傾きである。

その典型的な例として Fig. 4 に鉄 yoke が 1.95 mm (0.05 度)傾いた場合の誤差磁場の様子を示した。 B_Z 成分、と B_X , B_Y 成分の両方の誤差磁場が発生するが、図では半径 33.3 cm 円筒上の磁場成分として B_Z (3.0 T に対して 0.1 ppm、1.0 ppm と 10 ppm に等高線)と円筒面に垂直で半径方向を向いた磁場成分 B_R 分布(0.5 ガウス毎に等高線)を示している。打点領域は、 B_Z^{ER} >0(上向き)、または、 B_R >0(外向き)である。

この誤差磁場に対してシミングを実行したときの残差 磁場 B_Z^{RE} を Fig. 5(a)に示した。前図と同様の等高線で 示している。鉄量を 1623.7 cc の鉄片を使うが、ビーム蓄 積領域では 0.07 ppm の均一度が得られる結果である。 しかし、Eq. (8)の直行磁場成分は残存し、チーム直積領 域付近では Z 方向位置に依存しない成分となり、2.4 節 で議論した結果を示している。この例では残差 B_R^{RE} は ±1.13 ガウスで、磁力線の方向が、0.038 mrad だけ傾い ていることになる。この状況を模式的に誤差磁場の磁力 線で表すとFig. 5(b)である。シミング前では、誤差磁場は

Figure 5(a): Shimming simulation of passive shim for the residual fields after shimming of error fields due to tilted iron-yoke. Two frames plot contours of B_Z^{RE} (left) and B_R^{RE} (right) on *R*=0.333 m cylindrical surface.

Figure 5(b): Schematic drawings of error magnetic field (left: before shimming) and residual field (right: after shimming).

Figure 7: Shimmed B_R^{RE} at R = 33.3 cm cylindrical surface from Fig. 5(a) left type B_R distribution. ± 3.6 Gauss. B_R was shimmed to ± 0.17 Gauss.

軸方向成分を持っているが、シミングを行うことで誤差磁 場は軸に垂直方向成分のみとなる。

3.2 シムコイルの磁場

Figure 6 に、 B_R タイプについて、コイル電流からビーム 蓄積領域への応答行列の SVD 固有分布で示している。 このシムコイルは $\left(\frac{\partial B_X}{\partial X} + \frac{\partial B_Y}{\partial Y}\right) = 0$ の磁場を調整するシム コイルとして利用可能である。例として、全体を磁力線が 通り抜けるダイポール磁場、それに四重極成分で直交 磁場成分を調整する。一方、最も高次の磁場成分は周 回方向に一様な B_R を発生するが、2.4 節の議論と異なり、 シムコイルが有限長のために発生するものである。

シムコイルによる磁場補正をシミュレーションする。例としてFig.5の受動的シミング後の残差磁場を補正することを考える。このような直交磁場成分も、検出できれば、*B*Rタイプシムコイルにより調整可能である。Fig.7は、Fig.5(a)右と同様の残差であるが、±3.63ガウスの場合に、どの程度の補正が出来るかを示している。この場合、±0.17ガウスに小さく出来る事が解る。直交磁場が最終的な*g*-2/EDM 計測値にどの程度の影響を与えるかは検討中である。

3.3 傾斜磁場印加時の誤差磁場シミング

傾斜磁場(GF: Gradient Field)コイル(GFC: GF coil)は、 直積領域でミューオン軌道を安定化させるために加える。 現在の設計では最大、

 $\frac{\partial B_Z}{\partial R} = \frac{\partial B_R}{\partial Z} = -3.6 \times 10^{-3} [T/m] (9)$ の傾斜磁場であり、近似的に $B \propto R^n$ とする指数 n で、下記のように傾斜磁場の強さを表す。

$$n = -\frac{R}{B_z} \frac{\partial B_z}{\partial R}.$$
 (10)

GFC の通電電流調整で、指数 n は 0~3.0x10⁻⁴ ($\frac{\partial B_Z}{\partial R} = 0 \sim 2.7 \text{x} 10^{-3} \text{ T/m}$)の範囲で変更可能である。 B_Z 分布は、位置(R, Z)と指数 n に依存し、

$$B_Z^{TG} = B_Z^0 - n \frac{B_Z^0}{R^0} (R - R^0) + n \frac{B_Z^0}{R^0} \frac{Z^2}{2R^0}$$
(11)

である。このような磁場を発生するコイルとして、8 個の超 伝導コイルを直列結線する GFC を考えている。最大電 流のコイルは 29.6 kA である。主コイルのおおよそ 1/50 程度の電流であるが、0.5 mm 程度の設置誤差で 3.0 T に対して 1 ppm 程度の磁場分布をビーム蓄積領域に発 生させる。そのため、傾斜磁場コイル電流を変更すると、 シミングを行うことが必要であると考えている。この誤差磁 場は小さいので、GFC 利用時のシミングは、fine シミング 用のシムトレイで、磁石の消磁を行うことなく可能である。 また、シミング計算は目標磁場を Eq. (11)の磁場分布に 変更して、利用可能であると考えている。

4. まとめ

g-2/EDM 精密計測用磁石の磁場分布のシミング方針 について検討した。製作・設置直後のシミングでは鉄片 配置を用いる受動的シミングを行う。まず、消磁を伴う coarse シミングを行う。この段階では、数千 cc の鉄片を 使い、大まかなシミングを行う。鉄片配置の計算には MRI 用磁石シミングで開発したシミング計算のアルゴリズ ムを用い、その結果に基づいて鉄片配置作業を行う。繰 り返し作業で、鉄片の追加量が減少した段階で fine シミ ングに移る。Fineシミングでは消磁せずシミング作業を行 い、最終的に良好な均一度を得ることが出来る。

実験開始後の微調整と軸に直交な磁場成分の調整 用に、それぞれ、 B_Z タイプ、 B_R タイプのシムコイルアレイ 用意している。それぞれ周回方向の磁場分布を調整す るものである。実験開始後でも消磁を伴わない受動的 fine シミングは可能であると考えており、両者を合わせて 必要な磁場精度を確保していく。

謝辞

g-2/EDM 計測実験グープの共同研究者には研究会 を通して広く討論いただいている。感謝します。

参考文献

- [1] J. Bailey *et al.*, Final Report on the CERN Muon Storage Ring Including the Anomalous Magnetic Moment and the Electric Dipole Moment of the Muon, and a Direct Test of Relativistic Time Dilation, Nucl. Phys. B150 (1979)1.
- [2] G.W. Bennett *et al.*, Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys.

Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan July 31 - August 3, 2019, Kyoto, Japan

PASJ2019 THOH07

Rev. D 73, 072003 (2006).

- [3] 三部勉, 石田勝彦, 佐々木憲一, 「ミューオンg-2/EDM 実験」, http://www.jahep.org/hepnews/index-archive.html, 高エネルギー物理学研究者会議 (JAHP: Japan Association of High Energy Physicists), 高エネルギー ニュース vol. 12 no.3, 2012, pp. 209-218.
- [4] H. Iinuma *et al.*, Three-dimensional spiral injection scheme for g-2 /EDM experiment at J-PARC, NIM A Vol. 832 pp.51–62 (2016).
- [5] M. Abe *et al.*, 'Design method and candidate of a magnet for muon g-2/EDM precise measurement in a cylindrical homogeneous volume', Nuclear Inst. and Methods in Physics Research A Vol. 890, no. 11 May 2018, pp.51-63; https://doi.org/10.1016/j.nima.2018.01.026
- [6] M. Abe *et al.*, 'Static Magnetic Field Shimming Calculation Using TSVD Regularization With Constraints of Iron Piece Placements', IEEE Trans. on Appl. Supercond. vol. 27, no. 7, Oct. 2017, Art. no. 4400812.MS.