PASJ2019 THOI01

NewSUBARU における高エネルギーガンマビームを利用した

ガンマ線誘起陽電子消滅測定装置の開発

DEVELOPMENT OF HIGH ENERGETIC GAMMA BEAM INDUCED POSITRON ANNIHILATION APPARATUS AT NEWSUBARU

杉田健人^{#, A)}, 宮本修治^{B)}, 寺澤倫孝^{B)}, 橋本智^{B)}, 天野壮^{B)}, 梅澤憲司^{A)}, 堀史説^{A)}

Kento Sugita^{#, A)}, Shuji Miyamoto^{B)}, Mititaka Terasawa ^{B)}, Satoshi Hashimoto ^{B)}, Sho Amano ^{B)},

Kenji Umezawa^{A)}, Fuminobu Hori^{A)}

^{A)}Osaka Prefecture University

^{B)}Laboratory of Advanced Science and Technology for Industry, University of Hyogo

Abstract

We have developed a high energetic positron annihilation spectroscopy (PAS) apparatus using by Laser Compton Scattering (LCS) gamma beam at NewSUBARU synchrotron radiation facility, LASTI, University of Hyogo. The purpose of the apparatus is to measure for the bulk materials. We have tried two positron annihilation methods. One PAS was using a high energetic positron beam generated pair creation from 10 MeV over gamma beam irradiation to Pb target, the other hand was gamma beam directly implantation of the measurement samples. Any measurement used size of the sample mm or cm order at atmosphere.

1. はじめに

陽電子は電子の反粒子で、電子と同じ質量と逆符 号の正電荷をもつ。この様な陽電子は物質中に侵入 すると、原子核と電気的に反発を起こし空孔を自己 探索する性質がある。陽電子は電子と対消滅を起こ し消滅ガンマ線を放出するが、消滅ガンマ線のエネ ルギーは電子の運動量が反映される。また陽電子の 物質中への入射から消滅ガンマ線放出までの時間に は陽電子消滅サイトの電子密度が反映される。この 様な性質を持つことから陽電子はナノスケールのプ ローブとして金属、半導体や高分子材料などあらゆ る物質の材料研究に用いられてきた。陽電子の取得 には放射性同位元素 (RI: radioisotope) のβ+崩壊、 または 1.022 MeV 以上のエネルギーを持つ光子によ る電子・陽電子対生成の2 通りの方法により入手さ れる。実験室レベルではRIから作る非密封線源を用 いる方法がある。非密封線源はカプトンやNi等の薄 膜で RI を挟んだものとなる。実験ではこの線源を試 料で挟んで陽電子消滅測定を行う。この様な測定で は同一情報を持つ試料を2つ用意する必要がある。 また測定データには RI を保持している薄膜中での陽 電子消滅成分が上乗せされる。加えてRIから放出さ れる陽電子のエネルギーは白色で、測定の侵入深さ は異なる。この様な問題を解決するために加速器を 用いた陽電子のビーム化が行われている。陽電子 ビームはRIや対生成から取得した陽電子を電場によ る加速を用いたエネルギーの単色化や磁場による軌 道制御を行い、陽電子ビームを試料の特定の領域に 直接入射させ3次元的なデータが得られる。また、 ビーム化によって単一試料で測定可能になり、デー

タに線源成分が混ざることが無くなる。この様な陽 電子ビームは特にエネルギー100 keV 以下に加速し た低速陽電子ビームとして多くの施設で稼働してい る[1, 2]。陽電子の侵入深さはエネルギーに依存して いるため、低速陽電子ビームは表面から約100 μmま での表面を観察領域としている。また、低速陽電子 の散乱を防ぐために、測定環境を真空にする必要が ある。この様な問題からバルク材に対する大気中そ の場測定は困難であった。

そこで、我々はLaser Compton Scattering (LCS) に よって生成した 10 MeV を超えるガンマビームによ り、MeV オーダーの高速陽電子を生成し、これに よってバルク材料の評価を行う装置 (FPAS: Fast Positron Annihilation Spectroscopy)を開発している[3-5]。FPAS では使用するレーザーの切り替えや磁場を 調節することで様々なエネルギーの陽電子が使用可 能で、試料の深さ分布に関する情報が得られる。

また、ガンマ線を試料に直接入射させバルク材を 直接評価する Gamma induced Positron Spectroscopy (GiPS)という手法が近年開発されている[6,7]。し かし、従来のGiPSはガンマ線エネルギーが低い、も しくは制動放射を利用しているためエネルギー分布 が広く、陽電子の生成効率が低くなる。我々の使用 する NewSUBARU-BL01のLCS ガンマ線は 10 MeV 以上の高エネルギーで単色性が高く、効率よく陽電 子が生成できる。本稿では NewSUBARU 放射光施設 BL01のLCS ガンマ線を利用した FPAS と GiPS の現 状について報告する。

[#]dc106002@edu.osakafu-u.ac.jp

Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan July 31 - August 3, 2019, Kyoto, Japan

PASJ2019 THOI01

Figure 1: LCS gamma ray system at NewSUBARU BL01.

NewSUBARU 放射光施設のLCS と高速陽電 子の生成

NewSUBARU は SPring-8 サイト内にある中型放射 光子施設で軟X線~赤外領域の放射光とLCS ガンマ 線ビームラインがある。Figure 1 に LCS のビームラ インである NewSUBARU-BL01 の概観を示す。LCS は相対論的電子とレーザー光子の間に起こる散乱で、 通常のコンプトン散乱とは逆で光子にエネルギーが 付与される。NewSUBARU では BL01 の光学台に 4 台のレーザーを設置してあり、ここからレーザー光 を入射し蓄積リング内を周回する電子と LCS を起こ す。このとき LCS ガンマ線は2つの鉛コリメータを 通過し、ハッチ2(GACKO)で実験に使用する。 般的に LCS ガンマ線のエネルギーは電子の運動エネ ルギーとレーザー波長により決まる。NewSUBARU 通常運転1 GeV(校正値 982 MeV)の場合で各レー ザーを使用したときの LCS ガンマ線のエネルギーと フラックスを Table 1 に示す。また、このときの LCS ガンマ線により生成される陽電子を PHITS[8]により シミュレーションしたものを Fig. 2 に示す。このシ ミュレーションは光子を厚さ 3 mm の鉛に入射し、 ここから取り出される陽電子のエネルギー分布を求 めている。シミュレーション結果からもわかるよう に生成陽電子のエネルギーがもとの光子のエネル ギーから電子・陽電子の質量の和である 1.022 MeV を引いた値が最大強度となる。本研究では LCS ガン マ線フラックスと陽電子生成効率を考慮して Nd レーザーを使用する。

Table 1: Condition of LCS Gamma Ray at NewSUBARU

レーザー		LCS ガンマネ	LCS ガンマ線	
	波長	エネル	フラックス	
	[nm]	ギー[MeV]	[photon/s]	
Nd2w	532	33.3	1.5E+6	
Nd	1064	16.9	8.5E+6	
Er	1540	11.8	6.1E+5	
CO ₂	10592	1.73	1.3E+6	

Figure 2: Simulation of the energy of pair production positron from 16.9 MeV gamma photon into thickness of 3 mm Pb plate.

3. FPAS

Figure 3 に高速陽電子装置を示す。この装置は対 生成ターゲット、電磁石、試料ホルダーと検出器の 遮蔽が一体になっている。装置のサイズは1メート ル四方程度で実験ハッチ2 に配置して使用する。対 生成ターゲットに厚さ 3 mm の鉛板を使用している。 本実験では 16.9 MeV の LCS ガンマ線を鉛に入射さ せ対生成を起こし、8 MeV の高速陽電子が試料に注 入されるように磁場を調節した。このとき試料から 放出される消滅ガンマ線のエネルギーを HP-Ge 検出 器で測定するドップラー拡がり測定を行った。試料 には純鉄(厚さ7mm)とシリコン(厚さ17mm)を 使用した。8 MeV の陽電子では鉄への注入深さが最 大で 6 mm となる[5]。これらの測定結果を Fig. 4 に 示す。このプロファイルは、消滅ガンマ線スペクト ルからバックグラウンドを差し引き、ガウスフィッ ティングを行ったものを面積で規格化してある。測 定試料内部の空隙が大きいほど、陽電子が運動量の 低い電子と対消滅を起こす確率が高くなり、ドップ ラープロファイルが先鋭化する。本測定においても、 密度の低いシリコンのスペクトルが鉄のものよりも 先鋭化する妥当な結果が得られた。この測定の消滅 ガンマ線係数率は3~10 [count/s]であった。

PASJ2019 THOI01

Figure 3: FPAS apparatus.

Figure 4: Doppler profiles by FPAS in pure iron and silicon.

4. GiPS

GiPS は使用するガンマ線のエネルギーが高いほど、 ガンマ線の透過能が高くなるため、大きな試料が測 定できる。Figure 5 に PHITS シミュレーションによ る厚さ5 cm の鉄に 17 MeV のガンマ線が入射した場 合のガンマ線と陽電子の飛跡を示す。このシミュ レーションのガンマ線進行方向は左から右へ向かう。 シミュレーションから陽電子はガンマ線の通過領域 を中心に生成・消滅することがわかる。これが GiPS による試料観察領域となる。Figure 6に GiPS のセッ トアップを示す。GiPSは試料、鉛遮蔽とHP-Ge検出 器という簡便な構成になっている。Figure 7 に 16.9 MeV の LCS ガンマ線を用いた GiPS による鉄(厚さ 5 mm) とシリコン(厚さ 17 mm)のドップラー拡が り測定結果を示す。この測定では FPAS と同様の傾 向を持つドップラースペクトルが得られた。また, GiPS の消滅ガンマ線計数率は 100~180 [count/s]で あった。

Figure 5: Simulation of GiPS (a) 17 MeV gamma photon track (b) positron track.

Figure 6: GiPS apparatus.

Figure 7: Doppler profiles by GiPS in pure iron and silicon.

PASJ2019 THOI01

5. まとめ

従来の陽電子消滅法では測定が難しい mm~cm サ イズのバルク試料に対する 8 MeV の陽電子を用いた FPAS を行った。同様のサイズの試料に対して 16.9 MeV の LCS ガンマ線による GiPS を行った。これら の測定において同様の傾向を持つ結果が得られた。 FPAS と GiPS は観察領域が異なるが、今回使用した 試料は全体的に均質なものであるため、妥当な結果 である。GiPS の性質から、測定試料のサイズと対生 成散乱断面積が大きくなると、係数効率は高くなる。 我々の GiPS は高エネルギーであることから、イン ゴットの様なバルク材に対して非破壊測定が可能で ある。現在はこの二種類の陽電子消滅測定に、陽電 子寿命測定を含めたシステムの高度化と合金など実 用材を標的とした測定を行っている。

謝辞

本研究は NewSUBARU 放射光施設の運転員・ス タッフの皆様の協力により行われました。またガン マ線実験ハッチ GACKO を甲南大学よりお借りしま した。この場を借りてお礼申し上げます。

参考文献

- [1] P. Sperr et al., Applied Surface Science, 255, (2008), 35-38.
- [2] Q. Xu et al., Jour. of Phys. Conf. Series, 505, (2014), 012030.
- [3] F. Hori et al., Jpn. J. Appl. Phys. Conf. Proc.2 011301 (2014).
- [4] F. Hori *et al.*, Jour. of Phys. Conf. Series, 674, (2016), 012025.
- [5] 堀史説他、陽電子科学第10号(2018) pp. 21-28.
- [6] Y. Taira et al., Rev. Sci. Instrum. 84, 053305, (2013).
- [7] M. Butterling *et al.*, Nucl. Inst. and Meth. in Phys. Research B 269, (2011), 2623-2629.
- [8] Tatsuhiko Sato, Yosuke Iwamoto, Shintaro Hashimoto, Tatsuhiko Ogawa, Takuya Furuta, Shin-ichiro Abe, Takeshi Kai, Pi-En Tsai, Norihiro Matsuda, Hiroshi Iwase, Nobuhiro Shigyo, Lembit Sihver and Koji NiitaFeatures of Particle and Heavy Ion Transport code System (PHITS) version3.02, J. Nucl. Sci. Technol. ,2018;

https://doi.org/10.1080/00223131.2017.1419890