PASJ2019 WEPH033

磁場強度調整可能な永久磁石型偏向磁石の開発(3) DEVELOPMENT OF MAGNETIC FIELD ADJUSTABLE PERMANENT MAGNET DIPOLE (3)

目黒和幸^{#, A)}, 菊地晋也^{B)}, 今健一^{C)}, 松本教之^{D)} Kazuyuki Meguro^{#, A)}, Shinya Kikuchi^{B)}, Kenichi Kon^{C)}, Noriyuki Matsumoto^{D)} ^{A)} Iwate Industrial Research Institute ^{B)} SUN AI Inc. ^{C)} Iwate Industry Promotion Center ^{D)} High Energy Accelerator Research Organization (KEK)

Abstract

We have devised a mechanism for magnetic field adjustment based on mechanically moving permanent magnets. When the rotation angle of the rectangular permanent magnet is in the range of 0° to 40° , the magnetic field strength can be changed in the range of -19% at a maximum of 1,583 G, and the required torque is a maximum of 0.2 N·m. The torque required to switch between the ON state and the OFF state is 1.0 N·m.

1. はじめに

大型加速器施設ではビームの偏向や収束などを目的 として数多くの電磁石が用いられている。これらの電磁 石では磁場発生時に大電流を必要とし、さらにその電流 によって発生する熱を冷却するための設備や空調が不 可欠なことから、多大なランニングコストがかかっている のが現状である。そこで、近年では加速器の建設と運転 の両面に係るコスト削減のために電磁石を永久磁石に 置き換える試みが行われている。永久磁石を採用するこ とで、前述の消費電力が削減される他、冷却水配管や 電源ケーブルの敷設が不要になることから建設コストを 低減でき、また電気系トラブルや水漏れ事故のリスク低 減と保守費用の削減といったメリットも生まれる。欧州の 大型放射光施設 ESRF-EBS のメインリングでは永久磁石 を用いた偏向磁石が採用され[1]、既に建設に向けて量 産が進んでいる段階である。SPring-8-II でも偏向電磁石 の永久磁石化[2,3]に関する研究開発が進められ、既に 蓄積リングへのビーム輸送ラインに設置され運用開始し ている。国際リニアコライダー(ILC)計画においても、技 術設計書(TDR)検討当初には永久磁石化は盛り込まれ ていなかったが、建設・運用コスト低減のために永久磁 石化が再検討される[4]など、研究開発が盛んに行われている。

我々は、機械加工分野で用いられる永久磁石型マグ ネットチャック開発の経験を活かして、複数の永久磁石 の向きを機械的に動かすことで起磁力を変化させること を基本とした磁場調整機構を考案[5]、磁気回路試作品 で磁場調整が可能[6]であることを示してきた。本稿では、 永久磁石回転型磁場調整機構の実現に向けて、磁場 調整範囲と磁気回路切替にかかるトルクについて評価し たので報告する。

2. 磁気回路の設計

永久磁石の起磁力は自在に変更することができない ため、磁場強度を調整するには様々な工夫が必要となる。 例えば SPring-8-II で採用されている方式では、永久磁 石を短絡するように鉄片を接近して磁束を漏れさせる構 造をとり、鉄片の距離によってギャップに伝わる磁束量を コントロールしている[2,3]。これは、電気回路に置き換え れば負荷に並列に設置された可変抵抗を調整して負荷 へ流れる電流を調整することに相当する。我々はマグ ネットチャック開発で培った技術を有していることから、永 久磁石の配列や姿勢を機械的に動かす方式を採用した。

Figure 1: Structure of the magnetic circuit with rotatable permanent magnets.

[#] kmeguro@pref.iwate.jp

Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan July 31 - August 3, 2019, Kyoto, Japan

PASJ2019 WEPH033

この方式では、電気回路において負荷へかかる電圧を 可変電源によって調整するものと解釈できる。Fig. 1 (a) に示すように C型の磁性体ヨークに円筒形状の永久磁 石を直列に二個配置し、それぞれが面内で自由に回転 できる構造を基に設計を行った。Y軸を基準として永久 磁石の磁化方向の回転角を θ と定義する。(b)のように 2 個の永久磁石の磁化方向を $\theta = 0$ °に直列に揃えると、 ギャップへ多くの磁束を伝えることができて強い磁場が 誘起される(ON 状態)。一方、(c)のように上側磁石を $\theta =$ 90°、下側磁石を $\theta = -90°$ と反平行に配置すると、大半の 磁束は短いパスを通って近接する磁石間でループを形 成し、ギャップには非常に弱い磁場のみを生じる(OFF 状 態)。任意の角度に固定することで ON 状態と OFF 状態 の間の磁場強度に調整可能な機構である。

(a) Photographs of prototype

(b) Measurement of magnetic flux density

Figure 2: Prototype of the magnetic circuit.

Figure 3: Cross sectional layout of the magnetic circuit for simulation.

昨年度に試作した磁気回路の写真を Fig.2 に示す。 SS400 鋼材を切削加工してヨークとし、角型形状の永久 磁石がはめ込まれている。まだ任意の角度へ永久磁石 を回転させるための機構は実装されておらず、磁石の向 きは 90°単位でしか設定できない。試作品の長手方向の 中央部付近で測定した磁場強度は、ON 状態において +1,325 G、OFF 状態では-10.43 G であった。磁場強度の 絶対値はシミュレーション結果よりも小さな値であったが、 永久磁石の向きを回転させることで磁場強度を 1,300 G ⇔ -10 G の間で調整可能であることを実証した。

永久磁石回転型磁場調整機構の実現に向け、角型 形状の永久磁石を回転させた場合の磁場調整範囲と磁 気回路切替にかかるトルクについてシミュレーションを 行った。シミュレーターには有限要素法マルチフィジック ス解析ツール ANSYS の電磁界ソルバーMaxwell を用 い、Fig.3 に示す断面モデルに対して解析を行った。永 久磁石には□10 mm のネオジム磁石(日立金属 NMX-40CH、Hc = -975.0 kA/m, Br = 1.281 T)、ヨークには軟鉄 (steel 1008)のデータを用い、磁極の幅 Dp = 20 mm、 ギャップ Lg = 10 mm、ヨークの幅は 20 mm とした。永久 磁石が十分に回転できるように φ15 mm の空間が開い ており、また磁性体の中に永久磁石が完全に埋没してし まうと ON 状態であっても磁気回路の短絡が生じてしまう ことから、永久磁石の両側に5mmの空隙を設けた。これ らの空隙は便宜上空気のように示されているが、構造的 強度の面から比透磁率 µ≒1 の材料(真鍮など)を入れる ことを想定している。

永久磁石を回転させたときに生じる磁束線分布の様 子をシミュレーションした結果を Fig.4 に示す。 $\theta = 0^\circ$ 、即 ち ON 状態においては永久磁石が直列になりギャップに 向けて磁束が伝達している様子がみられる。θ = 45°にな ると、ギャップへは十分に磁束が伝達しているが、永久 磁石近傍で一部の磁束が短絡を始める様子が確認でき る。 θ=90°(OFF 状態)になるとすべての磁束が隣り合う永 久磁石に向かって流れ、ギャップ中には磁束が伝達しな いことがわかる。複数個の角型永久磁石を使用しても、 角度に応じてギャップ中の磁場強度を調整可能であるこ とが示された。Figure 5 に、より詳細な回転角に対する ギャップ中の磁場強度の依存性を示す。グラフ中の横軸 は永久磁石の回転角の、縦軸はギャップ中の磁束密度を 示す。赤丸がシミュレーションによって得られた結果であ り、併せて青色の線で cos θカーブを描いている。磁束密 度の回転角依存性は、永久磁石の角の影響のために cos θ からわずかに離れた挙動を示す。黄色の領域は回 転角 0~40°の範囲であり、この範囲内では 1,583~ 1,280 G まで磁場強度を変化させることが可能である。 これは0°のときの最大値に対して-19%の変化率である。

次に、永久磁石の回転に要するトルクの見積りを行った。シミュレーションでは二次元モデルを用いているため、 計算結果では単位長さあたりのトルクが得られる。 Figure 2 に示した磁気回路試作品では Z 軸方向の長さ を 200 mm としているため、本シミュレーション結果にお いても長さ 200 mm におけるトルクを求めることとした。 Figure 6 に回転角に対して永久磁石にかかるトルクの依 存性の計算結果を示す。グラフ中の横軸は永久磁石の 回転角 θ、縦軸は永久磁石にかかるトルクの大きさを示

Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan July 31 - August 3, 2019, Kyoto, Japan

0.1

0.8

0.7

0.6 0.5 0.4 0.3

0.2

0.1

PASJ2019 WEPH033

Figure 4: Simulated rotation angle dependency of magnetic flux lines.

す。赤丸は Fig. 3 の上側の永久磁石、青丸は下側の永 久磁石にかかるトルクを表している。0~90°の全域で見 ると、約64°で永久磁石1個あたりに最大1.0 N・mのトル クがかかることがわかった。このときのトルクの方向は、永 久磁石同士が反平行に、即ち OFF 状態になろうとする 方向である。偏向器の設置やメンテナンスの際に極力磁 場をゼロにすることが求められる場合には、ON 状態と OFF 状態を切り替える際に 1.0 N・m のトルクを乗り越え る必要がある。運転時では、ON 状態に近い磁場強度に

おいて外乱の影響を取り除くために微調整するため、黄 色で示した 0~40°の領域を考慮すれば十分であると考 えられる。そうしてみると、16°付近の約 0.2 N・m の山が 極大となる。0.2 N・m という値は比較的小型のモーター でも十分に回転可能で、ブレーキをかけるにも大がかり な装置を必要としないことから十分に実用的な値である と言える。

Figure 5: Calculated magnetic field strength at the center of pole-piece as a function of rotation angle.

Figure 6: Calculated torque required for magnet rotation as a function of rotation angle.

まとめと今後の展望 3.

本研究では、2 個の角型永久磁石を配置して互いに 反対方向に回転させることで磁場強度を調整する機構 の開発を行った。有限要素法マルチフィジックス解析 ツール ANSYS の電磁界ソルバーMaxwell を用いた磁 場シミュレーションを実施し、磁場調整範囲と磁気回路 切替にかかるトルクについて検討を行い、下記のような 結果が得られた。

- (1) 永久磁石の回転角 θ に対して磁束密度は cos θ カー ブからわずかに離れた依存性を示す。回転角 0~ 40°の範囲で、1,583~1,280Gまで磁場強度を変化 させることが可能である。これは 0°のときの最大値 に対して-19%の変化率である。
- (2) 磁気回路の Z 軸方向の長さを 200 mm と想定する と、ON 状態とOFF 状態の切り替えには永久磁石1

PASJ2019 WEPH033

個当たり 1.0 N・m のトルクを乗り越える必要がある。 磁場の微調整に必要な 0~40°の範囲では 0.2 N・m と比較的小型のモーターでも制御が可能なトルクで あることが見込まれることが分かった。

参考文献

- [1] C. Benabderrahmane *et al.*, "Magnets for the ESRF-EBS project", Proc. of IPAC2016, Busan, Korea, pp.1096.
- [2] T. Taniuchi *et al.*, "Status of permanent dipole development for SPring-8-II", Proceedings of the 14th Annual Meeting of Particle Accelerator Society of Japan, August 1-3 (2017), pp. 60-63.
- [3] T. Watanabe *et al.*, "Permanent magnet based dipole magnets for next generation light sources", Physical Review Accelerators and Beams, 20 (2017) 072401.
- [4] 国際リニアコライダー(ILC)に関する有識者会議 技術設計報告書(TDR)検証作業部会 第3回 議事録.
- [5] K. Meguro *et al.*, "Development of magnetic field adjustable permanent magnet dipole", Proceedings of the 14th Annual Meeting of Particle Accelerator Society of Japan, August 1-3 (2017), pp. 524-526.
- [6] K. Meguro et al., "Development of magnetic field adjustable permanent magnet dipole (2)", Proceedings of the 15th Annual Meeting of Particle Accelerator Society of Japan, August 7-10 (2018), pp. 521-524.