PASJ2019 WEPI011

交叉型アンジュレータからの THz 域コヒーレント放射の偏光特性(II)

CHARACTERISTICS OF POLARIZED COHERENT RADIATION IN THz REGION FROM A CROSSED-UNDULATOR (II)

齊藤寬峻[#],柏木茂,日出富士雄,三浦禎雄,武藤俊哉,南部健一,髙橋健,長澤育郎, 鹿又健,柴田晃太朗,森田希望,山田悠樹,石附勇人,寺田健人,濱広幸

Hirotoshi Saito, Shigeru Kashiwagi, Fujio Hinode, Sadao Miura, Toshiya Muto, Kenichi Nanbu, Ken Takahashi,

Ikuro Nagasawa, Ken Kanomata, Kotaro Shibata, Nozomu Morita, Hiroki Yamada, Yuto Ishizuki, Kento Terada

and Hiroyuki Hama

Research Center for Electron Photon Science, Tohoku University

Abstract

A variable polarized THz light source using a crossed-undulator configuration has been developed at Research Center for Electron Photon Science (ELPH), Tohoku University. A demonstration experiment will be carried out using newly constructed compact planar undulators at a test linear accelerator called t-ACTS in ELPH. The magnetic field measurement has been performed. The maesured fields of the two undulators were in good agreement with each other. A variable R_{56} triple bend lattice has been studied for the electron beam line as a phase shifter. Assuming an expected setup (a distance between the centers of each undulator, 5 m and the fundamental frequency, 1.94 THz), degree of circular polarization larger than 0.9 can be obtained in the angular range of 2.0 mrad, i.e. 12% of the radiation angular spread. Only the central part of the radiation will be used in the demonstration experiment.

1. はじめに

THz 光は周波数およそ 0.1-10 THz の電磁波である。 水素結合やファンデルワールス力による分子間相互作 用、分子の回転といった分子全体にまたがる振動モード に対応する吸収スペクトルがこの周波数帯に存在するこ とが知られている。右回り円偏光、左回り円偏光に対す る吸収の違いを表す円二色性スペクトルはカイラリティを 持つ物質の立体構造を反映する。そのため THz 領域で はタンパク質、核酸、糖類といった生体分子の構造解析 などに円偏光二色性分光法が利用されている[1]。しかし THz 領域には高い透過率を持つ複屈折物質が少ないた め、他の周波数帯に比べ偏光制御技術が遅れている。

東北大学電子光理学研究センターでは、加速器ベースの高輝度コヒーレント THz 光源の基礎研究として、交叉型アンジュレータを用いた偏光可変 THz 光源の開発を行っている。本稿では偏光制御の原理実証実験に向け開発中の交叉型アンジュレータの構成および想定される放射特性について報告する。

2. 交叉型アンジュレータの概要

交叉型アンジュレータは2台の平面アンジュレータと 移相器で構成される[2]。2台のアンジュレータは電子の 偏向方向が直交するよう直列に配置され、間に移相器 が設置される。バンチ長が放射波長より十分短い電子 ビームが各アンジュレータを通過した際に発生するコ ヒーレントな水平、垂直偏光放射を重ね合わせることによ り任意の偏光状態を持つコヒーレント光を生成する。移 相器は光を遅延させるための光学系と電子ビームのバイ パス経路で構成される。遅延光学系における光路長を 変化させることにより水平、垂直偏光成分の位相差調整、 すなわち偏光制御を行う。

3. 実験準備

3.1 t-ACTS

原理実証実験は東北大学電子光理学研究センターの試験加速器 t-ACTS (test Accelerator as Coherent THz Source)を用いて行う予定である。t-ACTS は高周波熱陰極電子銃、エネルギーフィルター用のアルファ電磁石、3mのSバンド進行波型加速構造で構成される線形加速器である。バンチ圧縮法として進行波型加速構造中でのvelocity bunching 法を採用しており、バンチ圧縮モードにおけるビームエネルギーは約22 MeV である。これまでに周波数4 THz 程度までのコヒーレント遷移放射および2.6~3.6 THz のコヒーレントアンジュレータ放射 [3]が観測されている。干渉計を用いて測定したコヒーレント遷移放射の周波数スペクトルから、最短のバンチ長は約80 fs (rms)と推定されている[4]。

Table 1: Undulator Parameters

Magnet array	Halbach type
Block dimension	70 mm x 23 mm x 20 mm
Period length	80 mm
Number of periods	7
Total length	587 mm
Magnet material	NdFeB
Residual magnetic field	1.22 T
Gap	33 mm
Peak magnetic field	0.471 T
K value	3.52

[#] hsaito@lns.tohoku.ac.jp

Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan July 31 - August 3, 2019, Kyoto, Japan

PASJ2019 WEPI011

Figure 1: Constructed undulators. (A) Horizontal deflection (CU1, under the magnetic field measurement). (B) Vertical deflection (CU2).

3.2 平面アンジュレータ

実験に向け 2 台の平面アンジュレータを設計した。2 台の基本的なパラメータは同一であるが、一方は水平偏 向、他方は垂直偏向型のアンジュレータである。アン ジュレータのパラメータをTable 1 に示す。t-ACTSのビー ムエネルギーおよびバンチ長を考慮し基本周波数が 2 THz 程度となるようパラメータを選択した。実験スペー スの制約から周期数を 7 と小さくし、1 台あたり 60 cm 程 度のコンパクトな設計とした。またギャップは 33 mm で固 定式である。本アンジュレータは 2019 年 3 月に NEOMAX エンジニアリング株式会社にて製作を完了し た(Fig. 1)。

3.2.1 磁場測定

東北大学電子光理学研究センターにて磁場測定を実施した。3軸のリニアステージにホールプローブ(F.W. BELL 社製 7010型)を取り付け、2軸方向(電子ビーム進行方向)に 5 mm 間隔で移動しながら磁場の y 成分(ギャップ方向成分)を測定した。Figure 2 に軸上の測定結果を示す。赤点は水平偏向アンジュレータ(CU1)、青点は垂直偏向アンジュレータ(CU2)の測定結果を、緑線は磁場計算コード Radia [5]による計算結果を示す。

Figure 2: Magnetic fields on the axis. The red, blue and green lines denote the measurement of CU1 and CU2 and the calculation by the Radia code, respectively.

Figure 3: Magnetic field distribution in the x direction at z=0. The red and the blue dots denote the measurement of CU1 and CU2. The green line is the calculation by the Radia code. The values are normalized by each $B_y(x=0)$.

Radia の計算では磁場の絶対値の積分が測定結果と一 致するよう決定した残留磁束密(1.221 T)を用いている。 また z=0 はアンジュレータ磁石列の中心(磁化方向が-y 方向の磁石の中心)に一致するよう合わせてある。

z=0 にて行った磁場の x 方向分布の測定結果を Fig. 3 に示す。赤点、青点は CU1, CU2 の測定結果を、緑線は Radia の計算結果を表しており、いずれも x=0 における 磁場の値で規格化している。磁石サイズが有限であるこ とから、中心からずれると磁場強度がわずかに低下する。 測定結果は Radia の計算結果に比べわずかに変化率が 大きかったが、この原因としては実際の磁石の端には固 定のための切り込みが入っていることが考えられる。変化 率の値は±1 mm で 0.02%、±3 mm で 0.21%程度で あった。エネルギー22 MeV における電子の蛇行振幅は 約 1 mm であるため、中心軌道および放射周波数への 影響はほぼ無視できると考えられる。

Figure 4 に測定および Radia の計算から得られた磁場 を仮定したときの電子軌道を示す。電子のエネルギーは 22 MeV を仮定し、4 次のルンゲ=クッタ法により磁場中 の電子の運動方程式を解くことにより計算を行った。赤 線は CU1 の測定結果、青線は CU2 の測定結果、緑線 は Radia の磁場を仮定した場合の結果である。なお最下 流の z=423.5 mm における x の値がゼロになるよう入射 角を調整しており、CU1、CU2、Radia でそれぞれ-1.287 mrad、-0.616 mrad、-0.694 mrad(磁場積分に換算すると -94.4 G·cm、-45.2 G·cm、-50.9 G·cm)である。CU1、2 間 および Radia の結果にはわずかに差異が見られるが、次 項で示すように放射への影響はほぼ無視できる。

3.2.2 放射特性(計算)

運動する荷電粒子からの放射電場は Lienard-

Figure 4: Calculated electron trajectories for the energy of 22 MeV. The red, blue and green lines denote the result assuming measured magnetic fields of CU1 and CU2 and that of the Radia code, respectively.

Wiechert ポテンシャルから計算される。その放射項は

$$\vec{E}(\vec{r},t) = \frac{q}{4\pi\varepsilon_0} \left[\frac{\vec{n} \times \left\{ \left(\vec{n} - \vec{\beta} \right) \times \vec{\beta} \right\}}{Rc(1 - \vec{n} \cdot \vec{\beta})^3} \right]_{\text{ret}}$$
(1)

と表される[6]。ここで q は粒子の電荷、a は真空の誘電 率、R は放射源の荷電粒子から観測点までの距離、 \vec{n} は 荷電粒子から観測方向への単位ベクトル、 $\vec{\beta}$ は光速 c で 規格化した荷電粒子の速度ベクトルである。[]ret は括弧 内の値を遅延時刻で評価することを示す。この放射電場 から単位立体角、単位周波数あたりの放射エネルギーを 計算すると次式のように表される。

$$\frac{d^2 W}{d\Omega d\omega} = \varepsilon_0 \frac{c}{\pi} \left| \int_{-\infty}^{\infty} [R]_{\rm ret} \vec{E}(t) e^{-i\omega t} dt \right|^2 \tag{2}$$

Figure 5 に Eqs. (1), (2)を用いて計算した軸上観測点 における単一電子からのアンジュレータ放射の周波数ス ペクトルを示す。赤線、青線、緑線はそれぞれ CU1 の測 定磁場、CU2 の測定磁場、Radia の磁場を仮定し Fig. 4 に示した軌道の入射角補正を行ったときの結果である。 いずれも基本波のスペクトルはよく一致しており、磁場エ ラーの影響は無視できることがわかる。基本周波数(スペ クトルのピーク値をとる周波数)は 1.94 THz であった。

Figure 5: Calculated frequency spectra of one undulator from one electron. The red, blue and green lines denote the result assuming measured magnetic fields of CU1 and CU2 and that of Radia code, respectively.

観測角を変化させて基本波の強度のピーク値を計算 することにより放射強度の空間分布が得られる。放射の 角度広がりは半値半幅で x 方向に 17 mrad、y 方向に 50 mrad と計算された。交叉型アンジュレータではこれと 直交する放射が重なるため、各方向の放射の角度広が りは 17 mrad になると考えられる。

3.3 移相器

移相器では遅延光学系を設置するために電子ビーム を迂回させるビームラインを作る必要がある。この移相器 ビームラインの要件としては遅延光学系を挿入するため の十分なスペースが確保できること、アンジュレータや偏 向磁石などに起因するバンチ伸長効果を補正できること、 第2アンジュレータへのビーム光学パラメータを調整でき ることなどが挙げられる。また実験スペースの制約から、 ビームラインの全長を3m程度に抑える必要がある。

このような条件を満たす光学系として、現在10台の四極磁石を含むトリプルベンド型のビームラインの検討を進めている[7]。偏向磁石1台あたりの偏向角を7°と小さくすることによって T566や有限のビームエミッタンスに起因するバンチ伸長効果を抑制するとともに R56の補正を行うことで、バンチ伸長を十分小さく抑えることが可能であると見積もられている。また第1、第2アンジュレータにおけるビームの位相空間分布が対称になるよう出口のTwiss パラメータの調整を行うことが可能である。

今後は放射の評価による各アンジュレータ入口での Twiss パラメータの検討、遅延光学系の設計、システム 全体の詳細設計など、要件を満たす移相器の実現に向 けた現実的な検討を進めていく予定である。

4. 偏光度の角度依存性(計算)

アンジュレータ放射波長および各アンジュレータから の観測距離の差は観測角により変化する。そのため交 叉型アンジュレータ放射の偏光は観測角依存性を持つ。 各アンジュレータからの水平、垂直偏光成分の位相差 ψ の観測角依存性は次のように書ける[2]。

$$\psi(\theta) = \psi_0 - \psi_\delta(\theta)$$

$$\psi_\delta(\theta) = \frac{4\pi\gamma^2 L_1(1 - \cos\theta)}{\lambda_1(1 + K^2/2 + \gamma^2\theta^2)\cos\theta}$$
(3)

 ψ_0 は軸上での位相差であり、 ψ_6 は観測角 θ における 位相差の変化量を表す。 λ_u はアンジュレータの周期長、 K は偏向定数、 γ は電子のローレンツ因子、 L_1 は 2 台の アンジュレータの光源間距離(アンジュレータ中心間距 離)である。

偏光度を評価するためにストークスパラメータ[8]を導入すると、円偏光度 $P_{\rm C}$ は S_3/S_0 と定義される。 S_0 は放射の全強度、 S_3 は右回り円偏光成分の相対強度を表すストークスパラメータである。 $P_{\rm C}$ =1,0,-1はそれぞれ完全な右回り円偏光、45°直線偏光、左回り円偏光を表す。正弦波型の放射電場および Eq.(3)の位相差の角度依存性を仮定し、有限の放射波束長を考慮すると、円偏光度は次式で表される[2]。

PASJ2019 WEPI011

Figure 6: Angular dependence of $P_{\rm C}$. The red line and the blue broken line denote $P_{\rm C}$ and angular dependence of the intensity of the undulator radiation, respectively.

$$P_{C}(\theta) = \begin{cases} \left(1 - \frac{|\psi(\theta)|}{2N\pi}\right) \sin \psi(\theta) \ (|\psi(\theta)| \le 2N\pi) \\ 0 \ (|\psi(\theta)| > 2N\pi) \end{cases}$$
(4)

Nはアンジュレータの周期数である。

製作したアンジュレータの磁石列の長さは 1 台あたり 587 mm である。3.3 節で示した移相器における光路長は 3.5 m 程度になることから、実験で用いる交叉型アンジュ レータの L1 は 5 m 程度を想定している。L1=5 m および 製作したアンジュレータのパラメータを仮定したときの円 偏光度の角度依存性を Fig. 6 に示す。赤線は円偏光度、 青色の破線はアンジュレータ放射強度の角度依存性を 表している。この結果から円偏光度は角度広がりの範囲 内で大きく変化することがわかる。偏光度が0.9以上の角 度広がりは 2.0 mrad、すなわち放射自体の角度広がりの 12%と見積もられる。これは正弦波型の電場および単粒 子からの放射角を仮定した場合の結果であり、実際に得 られる光をより厳密に評価するにはビームエミッタンスを 考慮した多粒子放射計算を行う必要がある。しかし周波 数 1.94 THz(波長 λ=155 um)の光の回折限界エミッタン ス $\lambda/4\pi$ =12.3 mm·mrad に比べ t-ACTS のビームエミッタ ンスは約 0.1 mm·mrad (ビームエネルギー22 MeV のとき) と2桁小さいことから、横方向のコヒーレンスは高く、エ ミッタンスの放射への影響は小さいと考えられる。実証実 験ではこの 2 mrad 程度の偏光制御が有効な角度範囲 内の光のみを観測する予定である。

5. まとめ

東北大学電子光理学研究センターでは交叉型アン ジュレータを用いた偏光可変コヒーレント THz 放射光源 の研究を行っている。現在、試験加速器 t-ACTS を用い た偏光制御実験に向け準備が進められている。2 台の平 面アンジュレータの製作を完了し、磁場測定を行った。 磁場エラーは十分小さく、単粒子計算によるとビームエ ネルギー22 MeV で基本周波数 1.9 THz、角度広がり 17 mrad (HWHM)の放射が得られる見込みである。移相 器のビームラインとしては、バンチ伸長の補正および第1、 第2アンジュレータにおけるビーム光学パラメータを一致 させるような調整が可能なトリプルベンド型の光学系を検 討している。交叉型アンジュレータ放射の偏光は観測角 依存性を持ち、本実験における構成では 0.9 以上の円 偏光度が得られる角度広がりは 2.0 mrad と見積もられる。 実験ではこの中心付近の光のみを用いて偏光制御の実 証を行う。

謝辞

本研究は JSPS 科研費 17H01070, JP15K13401 の助 成を受けたものです。

参考文献

- [1] J. Xu et al., Astrobiology 3, 489 (2003).
- [2] H. Saito *et al.*, Proc. 10th Int. Particle Accelerator Conf. Melbourne, Australia, 1769-1771 (2019).
- [3] S. Kashiwagi *et al.*, Infrared Phys. Technol., 93, 335-339 (2018).
- [4] H. Hama et al., Int. J. Opt. Photonic Eng., 2:004 (2017).
- [5] O. Chubar et al., J. Synchrotron Rad. 5, 481-484 (1998)
- [6] J. D. Jackson, *Classical Electrodynamics*. Third Edition, John Wiley & Sons, Inc. (1998).
- [7] N. Morita *et al.*, ibid. this proceedings, THOI10.
- [8] E. Hecht, Optics. Fourth Edition, Addison-Wesley, (2001).