PASJ2022 TUP025

# **EXPERIMENT OF LASER MODULATION FOR ELECTRON BEAM**

菅晃一<sup>#</sup>, 神戸正雄, 楊金峰, 吉田陽一 Koichi Kan <sup>#</sup>, Masao Gohdo, Jinfeng Yang, Yoichi Yoshida SANKEN(ISIR), Osaka University

#### Abstract

Ultrashort electron beams are useful for time-resolved measurements such as pulse radiolysis. Laser modulator is expected for improving the time resolution and irradiation method in the measurements and reaction analysis. Laser modulation increases energy spread of electron bunches using a laser and undulator. Experiments of laser modulation using electron beam will be reported.

### 1. はじめに

フェムト秒・ピコ秒パルス幅を有する電子ビームは、自 由電子レーザー、パルスラジオリシス等の加速器物理、 物理化学の研究に応用されている。そのため、短パルス 電子ビーム発生は、高品質な光源開発や時間分解計測 における時間分解能向上のために不可欠となっている。 これまでに阪大産研では、フェムト秒電子ビームとフェム ト秒レーザーを用いて、フェムト秒時間分解能を有する パルスラジオリシス(過渡吸収分光法)を開発・利用して きた。今後、パルスラジオリシスの時間分解能を向上する ためには、さらに短い電子ビームが必要となる。これまで に電子ビーム発生では、フォトカソード高周波(RF、radio frequency)電子銃にピコ秒またはフェムト秒紫外光を入 射し、光電子を電子ビームとして利用してきた。さらに、 発生した電子ビームを加速管によりエネルギー変調し、 アクロマティックアークの磁気パルス圧縮器により約 30 MeV のフェムト秒電子ビームを発生してきた。光電子 発生にフェムト秒レーザーを用いて、さらに空間電荷効 果を低減した場合は、フェムト秒電子銃と磁気パルス圧 縮の最適化により、マイケルソン干渉計を用いて 20 フェ ムト秒の電子ビーム計測を行うことが可能になっている [1]。

新たな電子ビーム圧縮技術の開発において、さらに 短パルスの電子ビームパルス列もしくは単パルスを得る ためのレーザー変調は有用な手段であることが期待され る。レーザー変調とは、アンジュレータ周期磁場中に レーザーと電子ビームを入射することにより、電子ビーム の(パルス中のスライス)エネルギー分散を増大させる手 法である。一般的には、単一パルスのレーザー光がレー ザー変調に用いられ、X 線自由電子レーザーの施設で は自由電子レーザーの X 線強度の増強および安定化 のために用いられている[2]。また、レーザー光が存在し ない時刻はレーザー変調が行われないため、時間的に 強度変調したレーザー光を用いた場合は変調によるエ ネルギー分散の増大が進行方向のスライスごとに異なる 電子ビーム発生も可能となる。そのため、レーザー変調 に使用するレーザーの時間プロファイルの操作も、レー ザー変調に関連した研究の種類を広げてきた。例えば、

# koichi81@sanken.osaka-u.ac.jp

マイケルソン干渉計等により、2つに分岐されたレーザー 光を合流させてレーザーの持つチャープを利用してレー ザーの時間的な強度変調、つまり、チャープドパルス ビーティング[3]等を利用する報告がある。サブピコーピ コ秒オーダーのうなりによる光の強度変調を用いて、円 形加速器におけるテラヘルツ放射[4]、フォトカソード ベースの加速器による高出力テラヘルツ光源の提案 [5,6]が行われている。いずれにしても、効率的なレー ザー変調を行うためには、入射電子ビームエネルギー・ エネルギー分散、使用レーザーの波長・ピークパワー、 アンジュレータの発振波長・磁場強度(K値)、下流の ビーム光学系(主に R<sub>56</sub>)の設計が不可欠である。そのよ うな設計や最適化により、例えば、電子ビームの変調波 長におけるバンチング因子を高める等の、効率的なレー ザー変調が可能となる。

そこで、本報告では、レーザー変調を用いた超短パル ス電子ビーム発生のための電子ビーム実験を行った。

# 2. レーザー変調の条件と測定

レーザー変調の効果の最適化を行う場合は、光源とし て使用した場合のアンジュレータの発振波長と使用する レーザーの波長を一致させる必要がある。

直線偏光アンジュレータの場合、水平方向と電子ビームの蛇行方向に x 軸、垂直方向と磁場の方向に y 軸、 ビーム進行方向に z 軸を定義し、アンジュレータの磁場 の垂直成分 B<sub>U</sub>を、

$$B_{\rm U} = B_0 \sin \frac{2\pi}{\lambda_U} z \tag{1}$$

とする。ここで、 $B_0$  は磁場の振幅、 $\lambda_U$  は磁場の周期長で ある。同時に、電子ビームが磁場を通過した際に増幅さ れる電磁波の基本波の発振波長  $\lambda_L$ は、磁場の強度を表 す K 値を用いて、共鳴条件下で、下記のように表される。

$$\lambda_{\rm L} = \frac{\lambda_{\rm U}}{2\gamma^2} \left( 1 + \frac{K^2}{2} \right) \tag{2}$$

$$K = \frac{eB_0\lambda_{\rm U}}{2\pi mc} \tag{3}$$

### PASJ2022 TUP025

ここで、yは電子のローレンツ因子、mは電子の静止質量、 cは真空中の光速である。

電子ビームエネルギー32.5 MeV ( $\gamma$ = ~64.6)において、 既存のレーザー波長 800 nm を考慮し、アンジュレータの 基本波の共鳴波長で 800 nm を満たすような周期長を検 討した。その結果、磁場周期長  $\lambda_U を$  6.6 mm とし、K 値/ 磁場振幅が、0.15/0.25 T であれば Eq. (2)を満たすことが できる。

図1に、レーザー変調の実験の模式図を示す。レー ザー変調されるための電子ビーム発生では、フォトカ ソード RF 電子銃加速器[1]からのフェムト秒電子ビーム の発生を行った。カソード駆動用の Ti:Sapphire フェムト 秒レーザーの3倍高調波からの紫外光パルスをフォトカ ソード RF 電子銃に入射し、光電子による電子ビームを 用いた。また、本加速器は、フォトカソード RF 電子銃、加 速管、磁気パルス圧縮器により構成される。これらを用い て、パルス圧縮されたフェムト秒電子ビーム(エネル ギー:32.5 MeV 前後、電荷量:)を発生した。電子銃への レーザー入射位相と加速管における加速位相は、それ ぞれ、30°と 100°を用いた。発生したフェムト秒電子ビー ムをチタン箔のビーム窓から低真空中に取り出し、レー ザー変調実験を行った。

レーザー変調用レーザーはフェムト秒レーザーの一 部(レーザー変調用としてエネルギー:<400 µJ/pulse、波 長:800 nm、パルス幅:130 fs、繰り返し:960 Hz)の光パ ルスを適宜時間遅延して使用した。電子ビームおよび レーザーの径方向の重なり確認のために、アンジュレー タ前後に2 セットの脱着可能なスクリーン(点線)と CCD カメラを用いた。また、軸方向の重なり測定(Timing meas.)では脱着可能な電気光学結晶(ZnTe、厚み1 mm) と偏光子とフォトダイオード(PD)を用いた。レーザーと電 子ビームを同軸で輸送するために、金属蒸着ペリクルを 用いた。

レーザーと同軸でアンジュレータへ入射した電子ビー ムのレーザー変調(エネルギー変調)の測定を行うため に、偏向磁石によるエネルギー幅の測定を行った。電子 ビームは偏向される前にアパーチャ(直径:1 mm)を通 過させて、整形を行った。偏向磁石は 2 つネオジム磁石 を用いた。



Figure 1: Experiment of laser modulation. Removable screens (dashed lines) and CCD cameras were used for transverse measurement. Timing measurement system using ZnTe crystal and a polarizer is also removable. Electron beam passing through the undulator was adjusted by an aperture with a diameter of 1 mm. Energy spread was measured using a bending magnet, screen, and CCD camera.

## 3. 測定結果

### 3.1 軸方向の重なり測定

レーザー変調を行うためには、電子ビームとレーザー のアンジュレータ入射時刻を一致させる必要がある。図2 に測定系と結果の例を示す。電子ビームが電気光学結 晶(ZnTe)に与える電場由来のポッケルス効果に基づい て、偏光測定を行った。偏光子をフォトダイオード前に設 置して、ポッケルス効果によるフェムト秒レーザーの偏光 変化を測定した(図2(a))。また、フェムト秒レーザーに対 する光学遅延を変化させることにより、電子ビームとレー ザーのタイミングが一致した時に、偏光子を通過する光 量、つまり、フォトダイオードの出力が増加した。これらの 結果により、電子ビームとレーザーの入射時刻が一致す る光学遅延の調査を行った。



Figure 2: (a) Timing measurement using ZnTe. (b) Photodiode (PD) output as a function of the time delay for the femtosecond laser. Five sequential sweeps and the averaged result were shown as the bottom and top sweeps.

#### 3.2 エネルギー幅の測定

図3に、測定結果を示す。レーザー変調された電子 ビームは、レーザーの存在する時間においてスライスの エネルギー幅が広がる。エネルギー幅測定を行うために、 偏向磁石とスクリーンを用いて、測定される電子ビームプ ロファイルの幅がエネルギー幅に相当するとして、測定 を行った。

ビーム進行方向において、偏向磁石磁場の長さおよ び磁石出口からスクリーンまでの距離は、それぞれ、 67 mm および 260 mm であった。また、磁場強度 0.74 T を考慮し、35 MeVの電子ビームに対して、R<sub>16</sub>は0.125 m と得られ、エネルギー幅見積もりの係数として用いた。測 定手順として、①光学遅延を調整し、②フェムト秒レー ザー無しで測定し、③フェムト秒レーザー有りで測定し、 ④項目②-③を 100 回繰り返し、⑤電子ビームのエネル ギー調整し、再度の測定を繰り返した(図 3(a-d))。ビー ムプロファイルとして図 3(e)の様な数 mm の視野におい て、画像を解析した。レーザーの時間遅延を軸方向の重 なり測定に対して、-2.3 ps、0 ps、+2.3 ps のそれぞれの電 子ビームエネルギーにおいて 3 通りの時間遅延条件で エネルギー幅のレーザー有無による比率測定の平均値 と標準偏差を解析した。現段階では、シングルショットに よるレーザー変調測定の比較は困難であるが、電子ビー ムエネルギーが 31.9 MeV の場合、レーザー有無による 幅の比は1.02と得られた。

Proceedings of the 19th Annual Meeting of Particle Accelerator Society of Japan October 18 - 21, 2022, Online (Kyushu University)

### PASJ2022 TUP025



Figure 3: (a-d) Energy spread energy ratio with or without laser for four energy conditions. Error bars are standard deviations of datasets of 100 pairs of images. (e) An example image of beam profile for the energy spread measurement. (f) Energy spread ratios as functions of time delay of the laser.

# 4. エネルギー変調の理論的な見積もり

レーザー変調におけるエネルギー幅の変化について は、理論的な研究もおこなわれている[2]。効率が良い レーザー変調、つまり、電子ビームエネルギー幅の増加 させるためには、レーザーや電子ビームの径、K 値など に依存し、下記のようにあらわされる[2]。

$$\sigma_{\Delta E} \approx \sqrt{\frac{\sigma_r^2}{2(\sigma_x^2 + \sigma_r^2)}} \sqrt{\frac{P_L}{P_0}} \frac{K[JJ] N_u \lambda_u m c^2}{\gamma_0 \sigma_r}$$
(4)

ここで、 $\sigma_{\Delta E}$ はエネルギー幅の増加、 $\sigma_x$ は電子ビーム径、  $\sigma_L$ はレーザー径、 $P_L$ はレーザーピークパワー、[JJ]はベッ セル関数による係数、 $N_u$ はアンジュレータの周期数、 $\lambda_u$ はアンジュレータの周期長である。

理論的見積もりでは、表 1 のパラメータを用いて、 レーザー変調によるエネルギー幅の増大は  $\sigma_{\Delta E}/(\gamma_0 mc^2)$ として、0.16%と得られた。初期エネルギー 幅を 0.1%とすると、レーザーの有無による幅の比率は (0.16 + 0.1)/0.1 = 2.5と考えられる。また、実験におけ るレーザー変調によるエネルギー幅の変化が小さいため、 今後は最適化(アンジュレータ磁場、電子ビームエネル ギー、パルス幅等)が必要であると考えられる。

| Table 1 | 1: | Parameters | for | Theoretical Estimation |
|---------|----|------------|-----|------------------------|
|         |    |            |     |                        |

| Electron beam size / energy                                | 1 mm / 32.5 MeV                          |
|------------------------------------------------------------|------------------------------------------|
| Undulator period /<br>number / magnetic<br>field / K value | 6.6 mm / 20<br>0.25 T / 0.15             |
| Laser size / wavelength<br>/ peak power                    | 1 mm / 800 nm /<br>4 GW (0.4 mJ, 100 fs) |

## 5. まとめ

レーザー変調の電子ビーム実験を行っている。レー ザーと電子ビームをアンジュレータへ同軸入射し、レー ザー有無でエネルギー幅(rms)の比率を測定した。実験 では、1.02 と得られた。理論的計算では、2.5 と見積もら れた。今後、偏向磁石部の改良とエネルギー幅測定の 高感度化、アンジュレータの磁場制御、電子ビームの短 パルス化と同期測定、レーザー変調(不均一な振幅磁場 の影響等)の計算、線量計へのビーム照射を行う。

## 謝辞

本研究は、科研費(15H05565, 17H01374, 19K05331, 20H00364) による支援を受けました。

# 参考文献

- I. Nozawa *et al.*, "Measurement of <20 fs bunch length using coherent transition radiation", Phys. Rev. ST Accel. Beams 17, 072803 (2014).
- [2] Z. Huang *et al.*, "Measurements of the linac coherent light source laser heater and its impact on the x-ray free-electron laser performance", Phys. Rev. ST Accel. Beams 13, 020703 (2010).
- [3] A. S. Weling *et al.*, "Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas", Appl. Phys. Lett. 64, 137 (1994).
- [4] S. Bielawski *et al.*, "Tunable narrowband terahertz emission from mastered laser–electron beam interaction", Nat. Phys. 4, 390 (2008).
- [5] Z. Zhang *et al.*, "Generation of high-power, tunable terahertz radiation from laser interaction with a relativistic electron beam", Phys. Rev. Accel. Beams 20, 050701 (2017).
- [6] K. Kan *et al.*, "Intense THz source based on laser modulator and bunch compressor with electron beam ranging from 35 to 50 MeV", Proc. of Nonlinear Dynamics and Collective Effects in Particle Beam Physics, 2019, pp.285.