PASJ2022 WEP014

バルク MgB2を用いた超伝導アンジュレータ試験機の開発 DEVELOPMENT OF PROTOTYPE BULK SC UNDULAOR USING BULK MgB2

紀井俊輝^{#, A)}, 富田優^{B)}, 赤坂友幸^{B)} Toshiteru Kii ^{#, A)}, Masaru Tomita^{B)}, Tomoyuki Aksaka^{B)} ^{A)} Institute of Advanced Energy, Kyoto University ^{B)} Railway Technical Research Institute

Abstract

We are developing a bulk superconducting undulator as a future insertion device for light sources. Although, rare earth cuprate bulk superconductor with high transition temperatures is most promising because of its high critical current density, performance fluctuation coming from its melt-textured growth process using a seed crystal is serious drawback for generating precise periodic magnetic field. Therefore, we focused on magnesium diboride (MgB₂) bulk superconductor which does not need melt-textured growth process. We successfully fabricated bulk MgB₂ array and demonstrated periodic field generation using bulk MgB₂ superconductor. Measured peak magnetic field fluctuation was well suppressed comparing to rare earth cuprate bulk superconductor.

1. はじめに

現在、主流となっているアンジュレータは永久磁石や 超伝導線材を用いたものであるが、その性能は磁石材 料や超伝導線材の物性限界にほぼ到達しており、今後 の大幅な磁場強度増大は難しい。京都大学エネルギー 理工学研究所では、これらの従来型アンジュレータでの 磁場強度限界を大幅に超えることを目標に、バルク超伝 導体に着目し、新方式のアンジュレータの開発を行って きた[1-3]。バルク超伝導体は、塊状の超伝導体で超伝 導転移させることで疑似的な超強力永久磁石としての応 用が期待されている。バルク超伝導体による最高保持磁 束密度は希土類銅酸化物系超伝導体を用いて得られた 17.6 T で、永久磁石と比較して格段に高い磁場が達成さ れている[4]。

我々は、2006 年にバルク超伝導体アレイをソレノイド 中に周期的に配置する新方式アンジュレータを提案し、 原理検証試験、試験機の開発を継続してきた。これまで に判明した課題のうち、克服が難しい深刻なものとして、 入手可能な典型的な希土類銅酸化物系バルク超伝導 体の捕捉磁場特性がある程度選別を行ったうえで電流 密度に換算すると 15%程度ばらついてしまう問題[5]が あげられる。これは希土類銅酸化物超伝導体の製法上、 回避しがたいものであり、本質的な解決策は現時点では 見つかっていない。また、この問題に起因して、高精度 な磁場調整手法を確立するための数値計算の精度を高 めることや、高精度な磁場調整の実証研究が極めて難し いという問題が生じている。そこで、我々は製法の違いに より本質的な電流密度のばらつきが生じにくい MgB2 超 伝導体に着目し、数値解析と実験的評価をすすめてき た[6-8]。本稿では MgB2 を用いたアンジュレータ試作機 の開発状況と、試作機で得られた周期磁場計測結果を 紹介し、MgB2を用いることで得られた磁気特性の改善 について希土類銅酸化物超伝導体と比較し、実験的観 点から評価を行ったので報告を行う。

2.1 バルク超伝導体アンジュレータの原理

バルク超伝導体アンジュレータの模式図を Fig.1 に示 す。中心軸を挟み半周期ずらしたバルク超伝導体アレイ がソレノイド内に挿入された構造となっている。超伝導転 移したバルク超伝導体に対し、ソレノイドにより磁場変化 を与えると、個々のバルク超伝導体内部には磁場変化を 打ち消すように遮蔽電流が誘導される。その結果、中心 軸を挟み上下に向きの異なる電流が配置され、この電流 が作る磁場の重ね合わせとして中心軸上に周期交替磁 場生成される。磁場生成原理の詳細については文献[1-3]を参照されたい。

Figure 1: Schematic drawing of bulk SC undutlator and its principle of operation. When the magnetic field is changed using a solenoid, superconducting shielding current is induced in each bulk SC materials (white arrow). As the results, periodic magnetic field is generated on the central axis.

2.2 MgB2バルク超伝導体/超伝導体アレイ

次に、バルク MgB₂ 超伝導体について簡単に紹介を 行う。MgB₂は 2001 年に発見された金属系超伝導体とし ては最高の転移温度 T。~40 K を持つ超伝導体である [9]。我々がこれまで試験を続けてきた希土類銅酸化物 超伝導体と比べて超伝導転移温度が低く、臨界電流密 度は自己磁場下でおよそ 1/10 の 1 kA/mm²程度で磁場 強度の観点からは不利である。ただし、希土類銅酸化物 系超伝導体と異なり、結晶粒間の超伝導弱結合特性を

^{2.} MgB₂アンジュレータ試験機の開発

[#] t-kii@iae.kyoto-u.ac.jp

Proceedings of the 19th Annual Meeting of Particle Accelerator Society of Japan October 18 - 21, 2022, Online (Kyushu University)

PASJ2022 WEP014

示さず[10]、結晶成長過程が不要という特徴を持つ。結 晶粒界間の超伝導的な結合が弱いと、超伝導物質とし て結晶内の微視的な臨界電流密度が高くても、個々の 微小な結晶をまたいだ超伝導電流が流れないため、磁 場変化を打ち消す遮蔽電流が微小な結晶内に局在化し てしまい、Fig.1に示したような中心軸を挟み対向する大 電流を誘導することができない。そこで希土類銅酸化物 超伝導体では、弱結合を解消するために種結晶を用い た部分溶融・再結晶化過程を経ることで、多結晶体を超 伝導的に結合された疑似単結晶化しているが、この過程 では種結晶からの距離や再結晶時の方位により超伝導 特性がバルク超伝導体内部で異なってしまい、多数の バルク超伝導体を単一のバルク超伝導体から切り出すと 特性にばらつきが発生し、アンジュレータ開発では磁場 精度の観点で克服すべき重要な課題となっている。

本研究では、電流密度特性がそろったバルク超伝導 体による磁場生成を行うことで、アンジュレータピーク磁 場の制御性に対する評価を行うことを目的とし、鉄道総 研富田グループと共同でアンジュレータ向け MgB2 バル ク超伝導体の開発を行った。Figure 2 に鉄道総研で合 成・加工された MgB2 超伝導体の写真を示す。原料粉末 は1:2のモル比率の MgとBで、乾式混合の後1 ton/cm² の圧力でペレット化したのち 850℃で 3 時間Ar気流中で の熱処理を行った。(a)は SUS 製の肉厚 2 mm の補強リ ングをはめて熱処理を行った試料である。(b)は SUS リン グを外し、おおよその切削加工を行ったのち、ダイヤモ ンドやすりを用いてアンジュレータ試験片のサイズに微 細加工を施したものである。

Figure 2: (a) MgB₂ bulk material with SUS ring and (b) precisely machined MgB₂ for undulator prototype.

作成した厚さ 5 mm の試験片 10 個は周期 4 mm の ギャップを開けて半周期ずらして一体化を行った。磁場 変化を与えて磁束が運動した際の発熱を効率の良く徐 熱する必要があるため、純銅および真鍮を支持材として 用いた。Figure 3 に MgB₂ アレイの写真を示す。また、 Fig. 4 に MgB₂ アレイを挿入するための GM 冷凍機冷 却6T ソレノイドの写真を示す。軸上磁場ベクトル計測用 ホール素子アレイについては、参考文献[11]を参照され たい。

Figure 3: A stacked MgB_2 array for the undulator prototype.

Figure 4: Photograph of GM cooled 6T solenoid.

3. 磁場生成試験

MgB₂ 超伝導体と希土類銅酸化物超伝導体のアン ジュレータピーク磁場特性の比較を行うため、希土類銅 酸化物超伝導体として希土類にガドリニウム(Gd)を用い た MgB₂ と同形状の日本製鉄製 GdBaCuO 超伝導体 @QMGを用いた。アンジュレータ磁場生成と軸上磁場ベ クトル計測は以下の手順で行った。

- 1. 超伝導体アレイを挿入後、ソレノイド初期磁場ま で励磁する
- 超伝導体アレイをヘリウム連続流クライオスタット により超伝導転移温度以下に冷却する。
- 3. ソレノイドへの励磁電流をゆっくりと変化させ、バ ルク内部に遮蔽電流を誘導する。
- 軸上磁場ベクトル計測用ホール素子アレイをス テッピングモーターで駆動しながら磁場計測を行 い、その後ホール素子アレイを元の位置まで移 動する。
- 5. 3に戻り、外部磁場強度を掃引し、4の磁場分布 計測を繰り返す。

Figure 5 に MgB₂ アレイを用いて計測を行った際の計 測データの推移の一例を示す。この例では、1 T まで印 加したのち、MgB₂ アレイを 20 K まで冷却し、磁場変化 0.5 T, 1.0 T, 1.5 T, 2.0 T の4 点で軸上磁場ベクトルの計 測を行った。横軸のステップ数は、計測サンプリング間 隔(およそ 3 秒)での磁場計測回数を示している。

Figure 5: Typical measurement result of undulator field.

Proceedings of the 19th Annual Meeting of Particle Accelerator Society of Japan October 18 - 21, 2022, Online (Kyushu University)

PASJ2022 WEP014

4. 軸上磁場分布の評価

4.1 磁場強度の制御性(MgB₂)

Figure 5 に示すように、ソレノイドで与える磁場変化量 増大に従い、誘導電流が増加しアンジュレータ磁場は強 くなる。ただし、超伝導体内には臨界電流密度以上で電 流を誘導できないため、磁場変化量を増やすと、外周部 から誘導されはじめる遮蔽電流は、次第にバルク中央に 近い位置で発生するようになる。そのため、バルク内の 誘導電流の重心位置はビーム軸から徐々に離れていき、 与えた磁場変化に対するアンジュレータ磁場の比例関 係は徐々に悪化し、これ以上誘導電量が流せない状態 になるとアンジュレータ磁場は飽和する。Figure 5 の場合、 磁場変化 1.5 T まではアンジュレータ磁場の増大が明確 に観測されていたが、磁場変化 2.0 T では、ほとんど増 加がみられず、遮蔽電流が飽和に至ったと考えられる。

4.2 ピーク磁場強度の均一性の比較

ここではMgB2バルク超伝導体を用いることで、希土類 銅酸化物超伝導体で問題となっていたピーク磁場強度 の一様性に改善が見られたかを評価する。

Figure 6にMgB₂とGdBaCuOで得られた軸上アンジュ レータ磁場を示す。アレイ両端部の大きなピークを除い た、ピーク磁場の一様性に着目すると、GdBaCuOでは 磁場強強度の絶対値の標準偏差が10%であったのに対 し、MgB₂では標準偏差は4%と大幅に低減された。なお、 磁場強度に関しては超伝導体の臨界電流密度の差が 明確に反映されており、MgB₂で得られたピーク磁場強 度はおよそ 0.3 T とネオジム磁石で得られる磁場強度の およそ半分となっていた。

Figure 6: Comparison of on-axis undulator field for MgB₂ and GdBaCuO.

標準偏差の算出に用いたピーク磁場強度の絶対値は、 周期数が有限であることに起因し左右両端のピーク磁場 強度が若干高くなる影響を含んでいる。左右対称な位置 におけるピーク磁場強度の差について評価をおこない 臨界電流密度特性のばらつきについて評価をおこない 臨界電流密度特性のばらつきについて評価をおこない これてそれぞれ左 右反転させて重ねて表示したグラフを示す。反転の結果、 GdBaCuOではピークによっては 30%にも達する非常に 大きな相違が観測されているのに対し、MgB2 では相違 は最大でも 8%以内であり、MgB2 を用いることでピーク 磁場強度の一様性の高いアンジュレータ磁場が生成で きていることが確認できた。

Figure 7: Comparison of flipped undulator field for MgB₂ and GdBaCuO.

5. まとめ

MgB₂ は種結晶を用いた疑似単結晶化過程が不要で、結晶成長方位や種結晶からの距離の影響を受けず超 伝導体全体で均一な誘導電流が流れることが期待され、 また疑似単結晶化の複雑な工程管理が不要でロット間 での特性がそろった多数の超伝導体を作成することが 比較的容易である。本研究では、MgB₂ バルク超伝導体 を用いたアンジュレータ試作機を開発し、実際に磁場を 生成し、ピーク磁場強度のばらつきが希土類銅酸化物 超伝導体に比べ大幅に抑制できていること確認した。

謝辞

本研究は JSPS 科研費 JP17H01127、JP22H03870 の 助成を受け行われた。また、京都大学環境安全保健機 構低温物質管理部門による液体へリウムの供給が不可 欠でした。ここに感謝の意を表します。

参考文献

- [1] T. Kii et al., Proc. FEL2006 (2006) p. 653.
- [2] T. Kii et al., AIP conf. Proc. SR12009, Vol. 1234, pp.539-542, (2010).
- [3] R. Kinjo et al., Applied Physics Express vol. 6 042701, (2013).
- [4] J. H. Durrell *et al.*, "A trapped field of 17.6 T in meltprocessed, bulk Gd-Ba-Cu-O reinforced with shrink-fit steel", Supercond. Sci. Technol. 27 0820001.
- [5] T. Kii et al., Proc. FEL2010 (2010) p. 648.
- [6] 紀井俊輝,他、"バルク MgB2 超伝導体を用いた放射光 発生用アンジュレータの提案",第88回 2013 年度秋季低 温工学・超電導学会 2C-a07 P.117.
- [7] 紀井俊輝, "バルク MgB2 超伝導体によるバルク超伝導 体スタガードアレイアンジュレータ高精度化の検討", Proc PASJ2017, TUP020 pp. 347-350.
- [8] 紀井俊輝、"MgB2 アレイを用いた周期交替磁場の生成", 第103回 2022 年度春季低温工学・超電導学会 2B-a10 P.
 70.
- [9] J. Nagamatsu et al., Nature 410, pp. 63-64, (2001).
- [10] DC Larbalestier et al., Nature 410, pp. 186-189, (2001).
- [11] 紀井俊輝、"バルク超伝導体アンジュレータのための3次 元磁場分布計測システム",第102回2021年度秋季低温 工学・超電導学会1A-p04 P.12.