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Trace3D “Project’

O Split the big FORTRAN file
Each SUBROUTINE has file
Project built using a Makefile (K. Furukawa)

Version controlled (K. Furukawa)
o Repository jkksv01.j-parc.jp:/jk/master/t3d_cka

o Can reassemble back into the big FORTRAN
file if desired



General Additions

O Debugging and Data 1/0

Added output subroutines for debugging and recording Twiss
parameters along beamline

InputDump — stores input “deck’ to disk (file “InputData.txt) to
check that data is being properly input

TwissDump — stores Twiss parameters along beamline to disk file
“TwissDump.txt”. Twiss parameters are stored during simulation
since trajectory data is not kept in Trace3D memory.

o Convenience Matrix Functions
Multiply, scalar multiply, commutator
Matrix exponent
Matrix logarithm (E. Forest)



General Additions (cont.)

O Steering Magnets

Added steering magnets to the element library.

Note that only the centroid tracking 1s affected
by this element, it has no effect on the second-
order moment dynamics.

The type 1dentifier 1s 19 (NT=19).

The parameters 1s Ax’, Ay’



General Additions (cont.)

O Arbitrarily Oriented Beam Ellipsoids

To compute the electric self forces of the beam
Trace3D performs a coordinate transform to
“e1gen-coordinates” of ellipsoid

In the current version this transform fails when
the beam 1s skewed arbitrarily off the design axis

o That 1s, skewed 1n a direction other that one of the
two transverse directions.

This condition was fixed.



Choice of Elliptic Integral R, or Form Factor &

O For the space charge calculations you may
switch between the use of the form factor and
direct (numerical) evaluation of the elliptic
integral.

This feature 1s available using the input variable
iFlgUseRd in the SDATA section of the Trace3D
input file

iFlgUseRd = 0: use form factor € (default)
1IFlgUseRd = 1: use elliptic integral RD



Form Factor vs. Elliptic Integral

O Original Trace3D uses a “form factor” § in the self field
calculations.

The function &(s) 1s part of an analytic approximation to an
elliptic integral R,,, which is defined
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Form Factor vs. Elliptic Integral (cont.)

The approximations for R, in terms of the form factor are then given as
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Where X, Y, and Z are the semi-axes of the beam ellipsoid and
e =(X-1)2

is related to the eccentricity of the transverse ellipse



Comparison of Trace3D elliptic integral

and form factor simulations

SNS MEBT - KEK Trace3D (Using Form Factor)

SNS MEBT - KEK Trace3D (Using Rd)

BETA_y

—8—BETA z

BETA x

<
(ww) ejog

s (m)

s (m)

BETAy

—®—BETA z

BETA x

©

<
(ww) ejaq

©

SNS Version of Trace3D (form fac)

15
e
e

vz
60'€
€0€
6T
162
88T
9T
sz
sz
80T
[1x4
S6'1
891
[
15
a3
W
pys

€L0
590
590
S0
€70
S€0
820
¥10
rLo

s (m)



Adaptive Integration Stepping

Approach

Form a transfer matrix ®(s;s,) that includes space effects to
second order (2" order accurate)

Choose error tolerance ¢ in the solution (~ 10~ to 10-7)

Use d(s;s,) to propagate O in steps 2 whose length is
determined adaptively to maintain &



Adaptive Stepping and Trace3D

O Due to Trace3D “architecture”

implementing adaptive
stepping may require a major
rewrite

Brittle — dangerous

O Implementation possible if it
can be done in
SUBROUTINE TRANS

Compute log(®) = AsA
Compute exp(ZA)
May be too CPU intensive

FOLLOW

The transfer matnx for the step
length is stored in a common block
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XAL Architecture

Lattice ;
IElement «type»
[m_strid - String <D‘eiem IdealRfGap
-m_arrElems - ArrayList
. . -m_arridats - ArrayList e
Y XAL AI‘ChltGCtllI'e IS -m_setSyncJ;Set =i O‘elem:lde-alh.’lagauad
modern r
ElementSeq Ekiviert C «types .
—— elem IdealDrift
«interface»
Not coupled Eapes
. +getSpeciesCharge() - double 1
Easier to upgrade +getSpeciesRestEnergy() - double + | _clements
+getBeta() - double
. . . +getGammal) . double «interface»
EaSIGI‘ tO malntaln +getKineticEnsrgy() . double IElement

+getPosition() . double
+setiineticEnergy(in dblW : double)
+getPosition(in dbiPos - double)
+getAlgonthury) - 1Algorithm

Y XAL Appl. Devel “upeley
Hard part is settingup DB~ .

«interface»

API 1s object oriented and IAlgorithm
d d +getType() - String
+getVersion() - int
Ocumente (eaSY) +validProbe(in probe  IProbe) - boolean
+propagate(in elem - IElement, inout probe - IProbe)

New features are
(relatively) easily installed
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Summary

O Adding adaptive stepping to Trace3D may not be
worth the effort

Ability to implement it in TRANS

Compute matrix logarithms and exponentials

O Add space charge to SAD?
Unknown effort — inexperienced with SAD

O Add J-PARC features to XAL?
Is XAL a player?
Very familiar with XAL



4. Space Charge Algorithm (cont.)

Assume that A and B are constant
Then full transfer matrix ®(s;s,)) = €5 AB)

Y For practical reasons, we are usually given ®, and ®g
Beam optics provides @ ,(s)
In ellipsoid coordinates @y(s) has simply form because B> = 0

Dy(s)=eB=1+sB

Define @, (s)= [ ®,(s)@pg(s) + Pp(s)®A(5) ]
By Taylor expanding ®(s) = e’A™®) we find

D(s) = D,,.(s) + O(s%)

ave

That is, @, (s) 1s a second-order accurate approximation of ®(s)

ave



4. Space Charge Algorithm (cont.)

O We now have a stepping procedure which 1s second-order
accurate 1n step length 4.

Y Now consider the effects of “step doubling”
Let ©,(s+2h) denote the result of taking one step of length 24
Let t,(s+24) denote the result of taking twos steps of length /4

A(h) =t ,(s+2h) - T,(s+2h) = 6¢h?
where the constant ¢ = dv(s’)/ds for some s 'E[s,s+24]

Y Consider ratio of |A| for steps of differing lengths 4, and 4,

hi=hq [|A)/ |Ao|]1/3



4. Space Charge Algorithm (cont.)

We use the formula ,= h [|A,]/ |A,|]"? as the basis for adaptive step sizing

Given |A,| = & a prescribed solution residual error we can tolerate

For each iteration k£
Let |Ay| = | T,(s,+2h) - T,(s,+2h) |, the residual error
Let h, = h, be the step size at iteration k
Let i, = h,,, be the step size at iteration k+1

Wi = hy[ell T (s t2h) - T (s, +2h) |]1/3

where if &, < h,, we must re-compute the k™ step using the new steps size 4.,
to maintain the same solution accuracy



