
J-PARC Trace3D Upgrades

Christopher K. Allen
Los Alamos National Laboratory

Trace3D “Project”

 Split the big FORTRAN file
 Each SUBROUTINE has file

 Project built using a Makefile (K. Furukawa)

 Version controlled (K. Furukawa)
 Repository jkksv01.j-parc.jp:/jk/master/t3d_cka

 Can reassemble back into the big FORTRAN
file if desired

General Additions

 Debugging and Data I/O
Added output subroutines for debugging and recording Twiss

parameters along beamline
 InputDump – stores input “deck” to disk (file “InputData.txt”) to

check that data is being properly input

 TwissDump – stores Twiss parameters along beamline to disk file
“TwissDump.txt”. Twiss parameters are stored during simulation
since trajectory data is not kept in Trace3D memory.

 Convenience Matrix Functions
 Multiply, scalar multiply, commutator
 Matrix exponent
 Matrix logarithm (E. Forest)

General Additions (cont.)

 Steering Magnets
Added steering magnets to the element library.

 Note that only the centroid tracking is affected
by this element, it has no effect on the second-
order moment dynamics.

 The type identifier is 19 (NT=19).
 The parameters is Δx’, Δy’

General Additions (cont.)

 Arbitrarily Oriented Beam Ellipsoids
To compute the electric self forces of the beam

Trace3D performs a coordinate transform to
“eigen-coordinates” of ellipsoid

 In the current version this transform fails when
the beam is skewed arbitrarily off the design axis
 That is, skewed in a direction other that one of the

two transverse directions.

 This condition was fixed.

Choice of Elliptic Integral RD or Form Factor ξ

 For the space charge calculations you may
switch between the use of the form factor and
direct (numerical) evaluation of the elliptic
integral.
 This feature is available using the input variable

iFlgUseRd in the $DATA section of the Trace3D
input file

 iFlgUseRd = 0: use form factor ξ (default)

 iFlgUseRd = 1: use elliptic integral RD

1 2 3 4 5
s

0.2

0.4

0.6

0.8

1
ξ(s)

Form Factor vs. Elliptic Integral
 Original Trace3D uses a “form factor” ξ in the self field

calculations.
λ The function ξ(s) is part of an analytic approximation to an

elliptic integral RD, which is defined

 The form factor is defined

() () ()∫
∞

+++
≡

0 2/32/12/12

3
),,(

ztytxt

dt
zyxRD

()()










>
−

−

<
−

−

−
=

++
≡

−

−

∞

∫
1forcosh

1
1

1forcos
1

1

1

1

12
)(

1

2

1

2

20 2/32 ss
s

s

ss
s

s

sstt

dts
sξ

Form Factor vs. Elliptic Integral (cont.)

The approximations for RD in terms of the form factor are then given as

Where X, Y, and Z are the semi-axes of the beam ellipsoid and

ε = (X-Y)/2

is related to the eccentricity of the transverse ellipse

),(
3

),,(

),(1
13

),,(

),(1
13

),,(

2222

222

222

εξ

εξ

εξ

O
XY

Z

XYZ
ZYXR

O
XY

Z

YXYZ
YXZR

O
XY

Z

YXXZ
XYZR

D

D

D

+







≈

+



















−

+
≈

+



















−

+
=

Comparison of Trace3D elliptic integral
and form factor simulations

SNS MEBT - KEK Trace3D (Using Rd)

0

1

2

3

4

5

6

7

8

0

0.
14

0.
14

0.
28

0.
35

0.
43

0.
54

0.
65

0.
65

0.
73 1.
2

1.
37

1.
41

1.
44

1.
51

1.
61

1.
68

1.
95

2.
01

2.
08

2.
15

2.
15

2.
26

2.
88

2.
91

2.
94

3.
03

3.
09

3.
24 3.
3

3.
42

3.
42

3.
51

s (m)

B
et

a
(m

m
)

BETA_x

BETA_y

BETA_z

SNS MEBT - KEK Trace3D (Using Form Factor)

0

1

2

3

4

5

6

7

8

0

0.
14

0.
14

0.
28

0.
35

0.
43

0.
54

0.
65

0.
65

0.
73 1.
2

1.
37

1.
41

1.
44

1.
51

1.
61

1.
68

1.
95

2.
01

2.
08

2.
15

2.
15

2.
26

2.
88

2.
91

2.
94

3.
03

3.
09

3.
24 3.
3

3.
42

3.
42

3.
51

s (m)

B
et

a
(m

m
)

BETA_x

BETA_y

BETA_z

SNS MEBT - SNS Trace (Using Form Factor)

0

1

2

3

4

5

6

7

8

0

0.
14

0.
14

0.
28

0.
35

0.
43

0.
54

0.
65

0.
65

0.
73 1.
2

1.
37

1.
41

1.
44

1.
51

1.
61

1.
68

1.
95

2.
01

2.
08

2.
15

2.
15

2.
26

2.
88

2.
91

2.
94

3.
03

3.
09

3.
24 3.
3

3.
42

3.
42

3.
51

s (m)

b
et

a
(m

m
)

BETA_x

BETA_y

BETA_z

SNS Version of Trace3D (form fac)

Adaptive Integration Stepping

Approach
 Form a transfer matrix Φ(s;s0) that includes space effects to

second order (2nd order accurate)

λ Choose error tolerance ε in the solution (~ 10-5 to 10-7)

λ Use Φ(s;s0) to propagate σ in steps h whose length is
determined adaptively to maintain ε

Adaptive Stepping and Trace3D

 Due to Trace3D “architecture”
implementing adaptive
stepping may require a major
rewrite
 Brittle – dangerous

 Implementation possible if it
can be done in
SUBROUTINE TRANS
 Compute log(Φ) = ΔsA

λ Compute exp(hA)

λ May be too CPU intensive

XAL Architecture

ϒ XAL Architecture is
modern
λ Not coupled

λ Easier to upgrade

λ Easier to maintain

ϒ XAL Appl. Devel
λ Hard part is setting up DB

λ API is object oriented and
documented (easy)

λ New features are
(relatively) easily installed

XAL Architecture – Sequence Diagram

Summary

 Adding adaptive stepping to Trace3D may not be
worth the effort
 Ability to implement it in TRANS

 Compute matrix logarithms and exponentials

 Add space charge to SAD?
 Unknown effort – inexperienced with SAD

 Add J-PARC features to XAL?
 Is XAL a player?

 Very familiar with XAL

4. Space Charge Algorithm (cont.)
Assume that A and B are constant

 Then full transfer matrix Φ(s;s0) = e(s-s
0
)(A+B)

ϒ For practical reasons, we are usually given ΦA and ΦB

λ Beam optics provides ΦA(s)
λ In ellipsoid coordinates ΦB(s) has simply form because B2 = 0

ΦB(s) = esB = I + sB

Define Φave(s) = _[ΦA(s)ΦB(s) + ΦB(s)ΦA(s)]
λ By Taylor expanding Φ(s) = es(A+B) we find

Φ(s) = Φave(s) + O(s3)

That is, Φave(s) is a second-order accurate approximation of Φ(s)

4. Space Charge Algorithm (cont.)
 We now have a stepping procedure which is second-order

accurate in step length h.

ϒ Now consider the effects of “step doubling”
λ Let τ1(s+2h) denote the result of taking one step of length 2h
λ Let τ2(s+2h) denote the result of taking twos steps of length h

Δ(h) ≡ τ1(s+2h) - τ2(s+2h) = 6ch3

where the constant c = dτ(s’)/ds for some s’∈[s,s+2h]

ϒ Consider ratio of |Δ| for steps of differing lengths h0 and h1

h1= h0 [|Δ1|/ |Δ0|]
1/3

4. Space Charge Algorithm (cont.)

We use the formula h1= h0 [|Δ1|/ |Δ0|]
1/3 as the basis for adaptive step sizing

Given |Δ1| = ε, a prescribed solution residual error we can tolerate

For each iteration k
λ Let |Δ0| = | τ1(sk+2h) - τ2(sk+2h) |, the residual error

λ Let h0 = hk be the step size at iteration k

λ Let h1 = hk+1 be the step size at iteration k+1

hk+1 = hk [ε/| τ1(sk+2h) - τ2(sk+2h) |]1/3

where if hk+1 < hk, we must re-compute the kth step using the new steps size hk+1

to maintain the same solution accuracy

